精英家教网 > 高中数学 > 题目详情
20、如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.
求证:(1)FD∥平面ABC;
(2)平面EAB⊥平面EDB.
分析:(1)取AB中点G,连CG,FG,由已知中F是BE的中点,结合三角形中位线的性质,可得FG平行且等于AE的一半,又由EA、CD都垂直于平面ABC,且EA=2a,DC=a,可得四边形DEGC是平行四边形,进而得到DF∥CG,由线面平行的判定定理即可得到FD∥平面ABC;
(2)由已知中EA垂直于平面ABC,则EA⊥CG,又由△ABC是正三角形,可得CG⊥AB,由线面垂直的判定定理,可得CG⊥平面EAB,进而DF⊥平面EAB,结合面面垂直的判定定理即可得到平面EAB⊥平面EDB.
解答:证明:(1)取AB中点G,连CG,FG
四边形DEGC是平行四边形,
得到DF∥CG
DF?平面ABC,CG?平面ABC
所以FD∥平面ABC;
(2)可以证明CG⊥平面EAB,
又DF∥CG,所以DF⊥平面EAB
DF?平面EBD,所以,平面EAB⊥平面EDB
点评:本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,其中熟练掌握线面平行及线面垂直、面面垂直的判定方法及证明步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设?MGA=a(
π
3
≤α≤
3

(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数.
(2)求y=
1
S12
+
1
S22
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:
(1)FD∥平面ABC;  
(2)AF⊥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知△ABC是直角三角形,∠ACB=90°,M为AB的中点,PM⊥△ABC所在的平面,那么PA、PB、PC的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:2012届福建省高二下学期期末考试数学(文) 题型:选择题

如图:已知△ABC是直角三角形,∠ACB=90°M为AB的中点,PM⊥△ABC所在的

平面,那么PA、PB、PC的大小关系是(    )

A.PA>PB>PC    B.PB>PA>PC    C.PC>PA>PB    D.PA=PB=PC

 

查看答案和解析>>

同步练习册答案