精英家教网 > 高中数学 > 题目详情
F2是椭圆(a>b>0)的右焦点,e为离心率,P(x0y0)是椭圆上一点,求证:

|PF2|=aex0

 

答案:
解析:

设两焦点为F1F2,且,从椭圆定义知,即,所以本题须求出b.从,故知PF2垂直长轴,所以在RtPF2F1中,,可求出,从而.所求椭圆为

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
2
2
,左、右焦点分别为F1、F2,点P(2,
3
),点F2在线段PF1的中垂线上.
(1)求椭圆E的方程;
(2)设l1,l2是过点G(
3
2
,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?若经过,求出该定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点P(1,
32
)

(1)求椭圆G的方程;
(2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区三模)已知椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点依次为F1,F2,点M(0,2)是椭圆的一个顶点,
MF1
MF2
=0.
(1)求椭圆T的方程;
(2)设G是点F1关于点F2的对称点,在椭圆T上是否存在两点P、Q,使
PQ
=
PF1
+
PG
,若存在,求出这两点,若不存在,请说明理由;
(3)设经过点F2的直线交椭圆T于R、S两点,线段RS的垂直平分线与y轴相交于一点T(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源:广东省汕头市2010-2011学年高二下学期教学质量检测数学理科试题 题型:044

已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点P(1,).

(1)求椭圆G的方程;

(2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高二(下)教学质量检测数学试卷(理科)(解析版) 题型:解答题

已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点
(1)求椭圆G的方程;
(2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案