精英家教网 > 高中数学 > 题目详情
数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-
a
2
n
=1
,.
(Ⅰ)求证数列{
S
2
n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设bn=
2
4
S
4
n
-1
,求数列{bn}的前n项和Tn,并求使Tn
1
6
(m2-3m)
对所有的n∈N*都成立的最大正整数m的值.
分析:(Ⅰ)由2anSn-
a
2
n
=1
,知当n≥2时,2(Sn-Sn-1)Sn-(Sn-Sn-1)2=1,故
S
2
n
-
S
2
n-1
=1
(n≥2),由此能够证明数列{
S
2
n
}
为等差数列.并能求出求数列{an}的通项公式.
(Ⅱ)由bn=
2
4
S
4
n
-1
=
2
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1
,知Tn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
2n
22n+1
,故Tn
2
3
,由此能求出最大正整数m的值.
解答:解:(Ⅰ)∵2anSn-
a
2
n
=1

当n≥2时,2(Sn-Sn-1)Sn-(Sn-Sn-1)2=1
整理得,
S
2
n
-
S
2
n-1
=1
(n≥2),(2分)
S
2
1
=1
,(3分)
∴数列{
S
2
n
}
为首项和公差都是1的等差数列.(4分)
S
2
n
=n
,又Sn>0,∴Sn=
n
(5分)
∴n≥2时,an=Sn-Sn-1=
n
-
n-1

又a1=S1=1适合此式              (6分)
∴数列{an}的通项公式为an=
n
-
n-1
(7分)
(Ⅱ)∵bn=
2
4
S
4
n
-1
=
2
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1
(8分)
Tn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)

=1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=1-
1
2n+1
=
2n
2n+1
(10分)
Tn
2
3
,依题意有
2
3
1
6
(m2-3m)
,解得-1<m<4,
故所求最大正整数m的值为3   (12分)
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}各项均为正数,sn为其前n项的和,对于n∈N*,总有an,sn,an2成等差数列.
(1)数列{an}的通项公式;
(2)设数列{
1
an
}的前n项的和为Tn,数列{Tn}的前n项的和为Rn,求证:当n≥2时,Rn-1=n(Tn-1)
(3)设An为数列{
2an-1
2an
}的前n项积,是否存在实数a,使得不等式An
2an+1
<a对一切n∈N+都成立?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-an2=1.
(Ⅰ)求证:数列{Sn2}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设bn=
2
4
S
4
n
-1
,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-an2=1
(Ⅰ)求证数列{
S
2
n
}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设bn=
2
4S
4
n
-1
,求数列{bn}的前n项和Tn,并求使Tn
1
6
(m2-3m) 对所有的n∈N*都成立的最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)数列{an}各项均为正数,Sn为其前n项的和.对于n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项an
(2)设数列{
1
an
}
的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:当n≥2,n∈N时,Rn-1=n(Tn-1);
(3)若函数f(x)=
1
(p-1)•3qx+1
的定义域为Rn,并且
lim
n→∞
f(an)=0(n∈N*)
,求证p+q>1.

查看答案和解析>>

同步练习册答案