精英家教网 > 高中数学 > 题目详情
16.已知数列{an}各项都为正数,且a1=e,lnan+1-lnan=1(n∈N*
(1)求数列{lnan}的通项公式;
(2)令bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$,求数列{bn}的前n项和Sn

分析 (1)lna1=lne=1.lnan+1-lnan=1(n∈N*),数列{lnan}是以1为首项,公差是1的等差数列.即可得出.
(2)bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”方法即可得出.

解答 解:(1)∵lna1=lne=1.
∵lnan+1-lnan=1(n∈N*),
∴数列{lnan}是以1为首项,公差是1的等差数列.
∴lnan=1+(n-1)=n.
(2)bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列{bn}的前n项和Sn=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了等差数列的通项公式、对数的运算性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC的距离是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)是奇函数,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①若x>0,则x>sinx恒成立;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”
正确的是(  )
A.①④B.①②C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.
(3)设函数f(x)在区间[a,a+1]上的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b2=4.
(1)求数列{an}与{bn}的通项公式;
(2)若cn=$\frac{2}{{(n+1){b_n}}}$(n∈N*),求数列{cn}的前n项和Tn
(3)设dn=an•bn,数列{dn}的前n项和Mn,若Mn>2m-1恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列关于x的不等式:
(1)-x2+2x-$\frac{2}{3}$>0;
(2)x2+(1-a)x-a<0,a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x-$\frac{b}{x}$,(b>0),证明:f(x)在(0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,则xy的最小值为8,实数m的取值范围为(-4,2).

查看答案和解析>>

同步练习册答案