【题目】已知函数
(其中
),
,已知
和
在
处有相同的切线.
(1)求函数
和
的解析式;
(2)求函数
在区间
上的最大值和最小值;
(3)判断函数
的零点个数,并说明理由.
【答案】(1)
;(2)最大值
,最小值为
;(3)一个,理由见解析.
【解析】
(1)利用导数运算性质可得
,根据
和
在
处有相同的切线.可得
及
,联立解得
.
(2)利用导数研究
单调性后可得极值,再求出区间端点函数值即可得出所求的最值.
(3)利用导数研究函数的单调性极值,再结合零点存在定理可得出函数
的零点个数.
(1)
(其中
),
,
.
,![]()
.
和
在
处有相同的切线.
,解得
.
,
(2)
,
.
可得
在
上单调递减,在
上单调递增.
时,函数
取得极小值即最小值,
.
又
.
∴
时,函数
取得最大值,
.
综上可得:函数
在区间
上的最大值和最小值分别为:
.
(3)函数
.
.
当
时,
,故
在
为增函数;
当
时,
,故
在
为减函数;
当
时,
,故
在
为增函数;
,
,
而
,
故
在
有且只有一个零点,在
上无零点,
综上,
有一个零点.
科目:高中数学 来源: 题型:
【题目】已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为
.
(1)求动点M轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,问k1+k2是否为定值?若是的求出这个值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的一条弦的中点作平行于抛物线对称轴的平行线(或与对称轴重合),交抛物线于一点,称以该点及弦的端点为顶点的三角形为这条弦的阿基米德三角形(简称阿氏三角形).
现有抛物线
:
,直线
:
(其中
,
,
是常数,且
),直线
交抛物线
于
,
两点,设弦
的阿氏三角形是
.
![]()
(1)指出抛物线
的焦点坐标和准线方程;
(2)求
的面积(用
,
,
表示);
(3)称
的阿氏
为一阶的;
、
的阿氏
、
为二阶的;
、
、
、
的阿氏三角形为三阶的;……,由此进行下去,记所有的
阶阿氏三角形的面积之和为
,探索
与
之间的关系,并求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,平面DAC⊥底面ABC,
,AD=CD=
,O是AC的中点,E是BD的中点.
![]()
(1)证明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)已知
是直线
上的动点,点
的坐标是
,过
的直线
与
垂直,并且
与线段
的垂直平分线相交于点
.
(1)求点
的轨迹
的方程;
(2)设曲线
上的动点
关于
轴的对称点为
,点
的坐标为
,直线
与曲线
的另一个交点为
(
与
不重合),是否存在一个定点
,使得
三点共线?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,对每一个正整数
,该数列前
项的最大值记为
,第
项之后各项
的最小值记为
,记
.
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)证明:“数列
单调递增”是“
”的充要条件;
(3)若
对任意
恒成立,证明:数列
的通项公式为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的离心率
,左焦点为
,右顶点为
,过点
的直线交椭圆于
两点,若直线
垂直于
轴时,有
.
(1)求椭圆的方程;
(2)设直线
:
上两点
,
关于
轴对称,直线
与椭圆相交于点
(
异于点
),直线
与
轴相交于点
.若
的面积为
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com