精英家教网 > 高中数学 > 题目详情

若a>0,b>0,2a+3b=1,则ab的最大值为________.


分析:由于a>0,b>0,2a+3b=1,故可利用基本不等式求ab的最大值.
解答:∵a>0,b>0,2a+3b=1


故答案为
点评:本题以等式为载体,考查基本不等式,关键是注意基本不等式的使用条件:一正,二定,三相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a<0,b>0,那么下列不等式中正确的是(  )
A、2a22b2
B、log2
-a
<log2
b
C、log
1
2
|a|>log
1
2
|b|
D、2-
1
a
2-
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

18、给出下列命题:
①变量y与x之间的相关系数r=-0.9568,查表到相关系数的临界值为r0.05=0.8016,则变量y与x之间具有线性关系;
②a>0,b>0则不等式a3+b3≥3ab2恒成立;
③对于函数f(x)=2x2+mx+n.若f(a)>0.f(b)>0,则函数在(a,b)内至多有一个零点;
④y=f(x-2)与y=f(2-x)的图象关于x=2对称.其中所有正确命题的序号是
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

14、给出下列命题:
(1)若实数x满足log2009x=2009-x,则有x2>x>1成立;
(2)若a>0,b>0,则不等式a3+b3≥3ab2恒成立;
(3)对于函数f(x)=2x2+mx+n,若f(a)>0,f(b)>0,则函数在(a,b)内至多有一零点;
(4)函数y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
则其中所有正确命题的序号是
(1),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)定义“正数对”:ln+x=
0,  0<x<1
lnx,    x≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a;
②若a>0,b>0,则ln+(ab)=ln+a+ln+b;
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+b

④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+2.
其中的真命题有
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(  )
①ab≤1;     ②
a
+
b
2
;     ③a2+b2≥2;     ④
1
a
+
1
b
≥2.

查看答案和解析>>

同步练习册答案