精英家教网 > 高中数学 > 题目详情
已知双曲线=1的两个焦点分别为F1、F2,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是________________________.

思路分析:设P为左支上的点,F1为左焦点,|PF1|=r1,|PF2|=r2,则

(2)-(1)2,得r1r2=2.

=1.

答案:1


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=
3
3
x是其中的一条渐近线的方程,两条直线X=±
3
2
是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2|
AB
|=5
F1F2
,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的两个焦点分别为F1(-2
2
,0)
F2(2
2
,0)
,双曲线上一点P到F1、F2的距离的差的绝对值等于4.
(Ⅰ)求双曲线的标准方程;
(Ⅱ)若直线y=kx-1与双曲线C没有公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的两个焦点为F1、F2,实半轴长与虚半轴长的乘积为.直线l过F2点,且与直线F1F2的夹角为α,且tanα=,l与线段F1F2垂直平分线的交点为P,线段PF2与双曲线的交点为Q,且PQ∶QF2=2∶1,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源:2011年云南省高三第二次复习统测数学试卷(理科)(解析版) 题型:解答题

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=x是其中的一条渐近线的方程,两条直线X=±是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2||=5,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>