精英家教网 > 高中数学 > 题目详情
袋中装有大小和形状相同的小球若干个黑球和白球,且黑球和白球的个数比为4:3,从中任取2个球都是白球的概率为现不放回从袋中摸取球,每次摸一球,直到取到白球时即终止,每个球在每一次被取出的机会是等可能的,用表示取球终止时所需要的取球次数.
(1)求袋中原有白球、黑球的个数;
(2)求随机变量的分布列和数学期望.
(1)袋中原有3个白球和4个黑球;(2)分布列详见解析,.

试题分析:本题主要考查古典概型、离散型随机变量的分布列和数学期望等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出袋中白球和黑球个数,由于从中任取2个都是白球,则可列出,利用组合数的计算,计算出n的值,从而得到白球和黑球个数;第二问,利用第一问的结论,利用不放回抽样,计算出每一种情况的概率,列出分布列,利用计算出数学期望.
(1)依题意设袋中原有个白球,则有个黑球.
由题意知, 4分
,解得
即袋中原有3个白球和4个黑球. 5分
(2)依题意,的取值是.
,即第1次取到白球,
,即第2次取到白球
同理可得,
10分
分布列为

1
2
3
4
5






 
            12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:
所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
选择L1的人数
6
12
18
12
12
选择L2的人数
0
4
16
16
4

(1)试估计40分钟内不能         赶到火车站的概率;
(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求
(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某篮球决赛在广东队与山东队之间进行,比赛采用7局4胜制,即若有一队先胜4场,则此队获胜,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛组织者可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元,则组织者在此次决赛中要获得的门票收入不少于390万元的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·北京海淀模拟]已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校一位教师要去某地参加全国数学优质课比赛,已知他乘火车、轮船、汽车、飞机直接去的概率分别为0.3、0.1、0.2、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若事件A和B是相互独立事件,且P(A·B)=0.48,P(A·B)=0.08,P(A)>P(B),则P(A)的值为(   )
A.0.5       B.0.6          C.0.8       D.0.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列随机事件中的随机变量X服从超几何分布的是________.(填序号)
①将一枚硬币连抛3次,正面向上的次数记为X;
②从7男3女共10个学生干部中选出5个优秀学生干部,女生的人数记为X;
③某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为X;
④盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,X是第一次摸出黑球的次数.

查看答案和解析>>

同步练习册答案