精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为(  )
A.16B.
4
5
70
C.
1
5
70
D.32
∵PA,PB,PC两两垂直,
又∵三棱锥P-ABC的四个顶点均在半径为2的球面上,
∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.
∴16=PA2+PB2+PC2,又PA=2PB,∴5PB2+PC2=16,
设PB=
4cosα
5
,PC=4sinα,
则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC=
12
5
cosα+4sinα=
4
5
70
sin(α+∅)≤
4
5
70

则这个三棱锥的三个侧棱长的和的最大值为
4
5
70

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案