精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,CB=1,CA=数学公式,AA1=数学公式M为侧棱CC1上一点,AM⊥A1C;
(1)求证:B1C1∥平面A1BC;
(2)求异面直线A1B与AC所成的角的余弦值;
(3)求点C到平面ABM的距离.

解:(1)证明:在直棱柱ABC-A1B1C1中,
B1C1∥BC,B1C1?平面A1BC,BC?平面A1BC
∴B1C1∥平面A1BC.
(2)在直棱柱ABC-A1B1C1中,AC∥A1C1
∴∠BA1C1或其补角是异面直线A1B与AC所成的角.
连接BC1
∴CC1⊥平面A1B1C1
∴CC1⊥A1C1
又∠A1C1B1=∠ACB=90°,即A1C1⊥B1C1
∴A1C1⊥平面BB1C1C,
∴BC1?平面BB1C1C,
∴A1C1⊥BC1
在Rt△BCC1中,BC=1,CC1=AA1=
∴BC1=
在Rt△ABC1中,A1C1=,BC1=
∴A1B=

(3)过点C作CD⊥AB于N,连接MD,过点C作CH⊥MD于H,
∵CC1⊥平面ABC,
∴由三垂线定理,得MD⊥AB,
∴AB⊥平面MCD,
∴AB⊥CH,又CH⊥MD,
∴CH⊥平面ABM,即CH为点C到平面ABM的距离.
在平面A1ACC1中,由A1C⊥AM,易得△A1AC∽△ACM,


在Rt△ABC中,AB=


在Rt△MCD中,MD=

分析:(1)利用直棱柱的性质说明B1C1∥BC,B1C1?平面A1BC,BC?平面A1BC,即可证明B1C1∥平面A1BC.
(2)说明∠BA1C1或其补角是异面直线A1B与AC所成的角.连接BC1,求出BC1=,在Rt△ABC1中,求出的值即可.
(3)过点C作CD⊥AB于N,连接MD,过点C作CH⊥MD于H,说明CH为点C到平面ABM的距离.
通过△A1AC∽△ACM,求出CM,在Rt△MCD中,求出MD,利用,解出CH.
点评:本题考查直线与平面的平行,异面直线所成的角,点到平面的距离的求法,找出异面直线所成的角与点到平面的距离是解题的关键,考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案