数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总
定义在R上的奇函数f(x)在[-a,-b](a>b>0)上是减函数且f(-b)>0,判断F(x)=[f(x)]2在[b,a]上的单调性并证明你的结论.
设b≤x1<x2≤a,则-b≥-x1>-x2≥-a.
∵f(x)在[-a,-b]上是减函数,∴0<f(-b)≤f(-x1)<f(-x2)≤f(-a),∵f(x)是奇函数,∴0<-f(x1)<-f(x2),
则f(x2)<f(x1)<0,[f(x1)]2<[f(x2)]2,即F(x1)<F(x2).
∴F(x)在[b,a]上为增函数.
科目:高中数学 来源: 题型:
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区