为了了解调研高一年级新学生的智力水平,某校按l 0%的比例对700名高一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表l,表2.
表1:男生“智力评分”频数分布表
智力评分 | ||||||
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
智力评分 | ||||||
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)高一的男生人数是
男生的频率分布直方图如图所示:
(2)P=;
(3).
解析试题分析:(1)样本中男生人数是,由抽样比例是10%可得高一的男生人数是,
根据频率分布表可得,男生的频率分布直方图如图所示.
(2)根据前表得到样本的容量是,计算得到样本中学生“智力评分”在之间的频率为,
由估计学生“智力评分”在之间的概率是.
(3)样本中智力评分”在之间的有4人,设其编号是,样本中“智力评分”在间的男生有人,设其编号为,从中任取人的结果总数是共种,
至少有1人“智力评分”在间的有9种.
(1)样本中男生人数是,由抽样比例是10%可得高一的男生人数是, 1分
男生的频率分布直方图如图所示 4分
(2)由表1和表2知,样本中“智力评分”在中的人数是,样本的容量是,所以样本中学生“智力评分”在之间的频率, 6分
由估计学生“智力评分”在之间的概率是P= 7分
(3)样本中智力评分”在之间的有4人,设其编号是,样本中“智力评分”在间的男生有人,设其编号为,从中任取人的结果总数是共种, 9分
至少有1人“智力评分”在间的有种, 11分
因此所求概率是 12分
考点:古典概型,频率分布表,频率分布图.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:
(I)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);
(II)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.
附:
若则,。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.
(1)估计所抽取的数学成绩的众数;
(2)用分层抽样的方法在成绩为和这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组,第3组,第4组,第5组,由统计的数据得到的频率分布直方图如图所示,在其右面的表是年龄的频率分布表。
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
从天气网查询到邯郸历史天气统计(2011-01-01到2014-03-01)资料如下:
自2011-01-01到2014-03-01,邯郸共出现:多云天,晴天,雨天,雪天,阴天,其它2天,合计天数为:天.
本市朱先生在雨雪天的情况下,分别以的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为元或元;在非雨雪天的情况下,他以的概率骑自行车上班,每天交通费用元;另外以的概率打出租上班,每天交通费用元.(以频率代替概率,保留两位小数. 参考数据:)
(1)求他某天打出租上班的概率;
(2)将他每天上班所需的费用记为(单位:元),求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
| |||||||
年龄/周岁 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com