精英家教网 > 高中数学 > 题目详情
13.在△ABC中,c=$\sqrt{2}$,则bcosA+acosB等于(  )
A.1B.$\sqrt{2}$C.2D.4

分析 根据余弦定理化简bcosA+acosB,再由条件即可求出式子的值.

解答 解:由题意得,bcosA+acosB=b•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$+a•$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$
=$\frac{{b}^{2}+{c}^{2}-{a}^{2}+{a}^{2}+{c}^{2}-{b}^{2}}{2c}$=c=$\sqrt{2}$,
故选:B.

点评 本题考查余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.将五名插班生安排到A,B,C三个班级,要求每个班级至少安排一人.
(1)求A班恰好安排三人的概率;
(2)求甲、乙不安排在同一个班级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=tan(3x+φ)的图象关于点M($\frac{π}{4}$,0)成中心对称,则φ等于(  )
A.φ=$\frac{k}{2}$π+$\frac{π}{4}$,k∈ZB.φ=$\frac{k}{2}$π-$\frac{π}{8}$,k∈ZC.φ=kπ+$\frac{π}{4}$,k∈ZD.φ=kπ-$\frac{π}{8}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知a=4,b=3,A=30°,△ABC的解的个数为(  )
A.1B.0C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.四封信投入3个不同的信箱,其不同的投信方法有81种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设复数z满足4z+2$\overline{z}$=3$\sqrt{3}$+i,求复数z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列$\left\{{a_n}\right\}满足{a_1}=1,{a_2}=2,{a_{n+2}}=(1+{cos^2}\frac{nπ}{2}){a_n}+{sin^2}\frac{nπ}{2}$,n=1,2,3,….
(1)求a3,a4并求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{2n-1}}{{a}_{2n}}$,Tn=b1+b2+…+bn试比较|Tn-2|与$\frac{8}{(n+1)^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}中,a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),则a1+a2+…a2015=(  )
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.1008$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:log10025+lg20.

查看答案和解析>>

同步练习册答案