相关习题
 0  14328  14336  14342  14346  14352  14354  14358  14364  14366  14372  14378  14382  14384  14388  14394  14396  14402  14406  14408  14412  14414  14418  14420  14422  14423  14424  14426  14427  14428  14430  14432  14436  14438  14442  14444  14448  14454  14456  14462  14466  14468  14472  14478  14484  14486  14492  14496  14498  14504  14508  14514  14522  266669 

科目: 来源:长宁区二模 题型:填空题

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是______.

查看答案和解析>>

科目: 来源:上海 题型:填空题

已知对于任意实数x,函数f(x)满足f(-x)=f(x).若方程f(x)=0有2009个实数解,则这2009个实数解之和为______.

查看答案和解析>>

科目: 来源:成都二模 题型:解答题

已知函数f(x)=-
1
3
x3+x2+b,g(x)=
x+a
x2+1
,其中x∈R
(I)当b=
2
3
时,若函数F(x)=
f(x)(x≤2)
g(x)(x>2)
为R上的连续函数,求F(x)的单调区间;
(Ⅱ)当a=-1时,若对任意x1,x2∈[1,2],不等式g(x1)<f(x2)恒成立,求实数b的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数:f(x)=
x+1-a
a-x
(a∈R且x≠a)

(1)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立;
(2)当f(x)的定义域为[a+
1
2
,a+1]
时,求证:f(x)的值域为[-3,-2];
(3)(理)设函数g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.
(4)(文)设函数g(x)=x2+(x-a)f(x),其中x≤a-1,求g(x)的最小值.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知:M={a|函数y=2sinax在[-
π
3
π
4
]上是增函数},N={b|方程3-|x-1|-b+1=0有实数解},设D=M∩N,且定义在R上的奇函数f(x)=
x+n
x2+m
在D内没有最小值,则m的取值范围是______.

查看答案和解析>>

科目: 来源: 题型:

(08年福建卷文)(本小题满分12分)

三人独立破译同一份密码。已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响。

   (Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)密码被破译”与“密码未被破译”的概率哪个大?说明理由。

查看答案和解析>>

科目: 来源:不详 题型:解答题

判断下列函数奇偶性(1)f(x)=(x-1)
1+x
1-x
;(2)f(x)=
lg(1-x2)
|x2-2|-2

(3)f(x)=
x2+x
 ,(x<0)
-x2+x
 ,(x>0)
;         (4)f(x)=
1-cosx+sinx
1+cosx+sinx

(5)f(x)=
x
ax-1
+
1
2
x
(a>0且a≠1);            (6)f(x)=
x2(x-1),x≥0
-x2(x+1),x<0

查看答案和解析>>

科目: 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x+c(c为常数).
(1)求f(x)的表达式
(2)对于任意x1,x2∈[0,1]且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数f(x)=2x+1定义在R上.
(1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围;
(3)若方程p(p(t))=0无实根,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

(08年福建卷文)(本小题满分12分)

如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.

(Ⅰ)求证:PO⊥平面ABCD

(Ⅱ)求异面直线PB与CD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离。

查看答案和解析>>

同步练习册答案