相关习题
 0  230902  230910  230916  230920  230926  230928  230932  230938  230940  230946  230952  230956  230958  230962  230968  230970  230976  230980  230982  230986  230988  230992  230994  230996  230997  230998  231000  231001  231002  231004  231006  231010  231012  231016  231018  231022  231028  231030  231036  231040  231042  231046  231052  231058  231060  231066  231070  231072  231078  231082  231088  231096  266669 

科目: 来源: 题型:解答题

9.如图,圆O是△ABC的外接圆,AD垂直平分BC并交圆O于D点,直线CE与圆O相切于点C,与AB的延长线交于点E,BC=BE.
(1)求∠DCE的大小;
(2)若AE=1,求AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在两个极值点x1、x2,其中x1<x2
(1)求实数a的取值范围;
(2)求g(x1-x2)的最小值;
(3)证明不等式:f(x1)+x2>0.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,∠A=2∠B,∠C的平分线交AB于点D,∠A的平分线交CD于点E.求证:AD•BC=BD•AC.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图,在△ABC中,AB=AC,以AB为直径的圆O与边BC,AC分别交于点D,E,且DF⊥AC于F.若CD=3,EA=$\frac{7}{5}$,则EF的长为$\frac{9}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于N,过N作圆O的切线交BC于D,OD交圆O于点M.
(Ⅰ)证明:OD∥AC;
(Ⅱ)证明:$\frac{4DM}{CN}=\frac{DM}{DM+AB}$+1.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD.
(Ⅰ)设E为线段PA的中点,求证:BE∥平面PCD;
(Ⅱ)若PA=AD=DC,求平面PAB与平面PCD所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=loga$\frac{x+1}{x-1}$(a>0且a≠1).
(I) 求函数的定义域,并证明:f(x)=loga$\frac{x+1}{x-1}$(a>0且a≠1)在定义域上是奇函数;
(Ⅱ)对于x∈[2,4],loga$\frac{x+1}{x-1}$>loga$\frac{m}{(x-1)(7-x)}$恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为x2-2x+y2=0,以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=$\frac{π}{4}$(ρ∈R).
(Ⅰ)写出C的极坐标方程,并求l与C的交点M,N的极坐标;
(Ⅱ)设P是椭圆$\frac{{x}^{2}}{3}$+y2=1上的动点,求△PMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,已知⊙A和⊙B的公共弦CD与AB相交于点E,CB与⊙A相切,⊙B半径为2,AE=3.
(Ⅰ)求弦CD的长;
(Ⅱ)⊙B与线段AB相交于点F,延长CF与⊙A相交于点G,求CG的长.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,则∠AOC等于(  )
A.120°B.130°C.140°D.150°

查看答案和解析>>

同步练习册答案