相关习题
 0  235350  235358  235364  235368  235374  235376  235380  235386  235388  235394  235400  235404  235406  235410  235416  235418  235424  235428  235430  235434  235436  235440  235442  235444  235445  235446  235448  235449  235450  235452  235454  235458  235460  235464  235466  235470  235476  235478  235484  235488  235490  235494  235500  235506  235508  235514  235518  235520  235526  235530  235536  235544  266669 

科目: 来源: 题型:解答题

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值为$-\frac{{\sqrt{10}}}{5}$.
(1)求证:BD⊥A1C1
(2)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.极坐标方程ρ2cos2θ=1为所表示的曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,几何体ABC-C1B1的底面ABC为等边三角形,侧面BB1C1C为矩形,B1B⊥平面ABC,E为边AB1的中点,D在边BC上移动.
(1)若D为边BC的中点,求证:BE∥平面ADC1
(2)若AB=BB1=2,记l为平面BEC与平面ADC1的交线,试确定点D的位置,使得直线l与平面ACC1所成的角θ满足sinθ=$\frac{\sqrt{21}}{14}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.某地区对高一年级学生的瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.现随机抽取某学校高一学生共40人,下表为该批学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
视觉
听觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为$\frac{2}{5}$.
(1)试确定a、b的值;
(2)将抽取所得学生的频率视为概率,从该地区高二年级学生中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列与数学期望Eξ及方差Dξ.

查看答案和解析>>

科目: 来源: 题型:解答题

3.求下列函数的导数:
(1)y=(2x3-1)(3x2+x);
(2)y=3(2x+1)2-4x;
(3)y=$\frac{sinxlnx}{x}$;
(4)y=extanx.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)=x3-3x,则函数h(x)=f[f(x)]-c,c∈[-2,2]的零点个数(  )
A.5或6个B.3或9个C.9或10个D.5或9个

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线C1,:y2=2px上一点M(3,y0)到其焦点F的距离为4,椭圆C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且过抛物线的焦点F.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线l1交抛物线C1交于A,B两不同点,交y轴于点N,已知$\overrightarrow{NA}$=$λ\overrightarrow{AF}$,$\overrightarrow{NB}$=μ$\overrightarrow{BF}$,求证:λ+μ为定值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.如图,四棱锥P-ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(  )
A.30°B.60°C.45°D.90°

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(2x+1)的定义域为[-3,3],则函数f(x-1)的定义域为[-4,8].

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知f(x)为二次函数,-1和3是函数y=f(x)-x-4的两个零点,且f(0)=1
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ) 设g(x)=f(x)-3x-6,求y=g(log3x)在区间$[\frac{1}{9},27]$上的最值,并求相应x的值.

查看答案和解析>>

同步练习册答案