相关习题
 0  235978  235986  235992  235996  236002  236004  236008  236014  236016  236022  236028  236032  236034  236038  236044  236046  236052  236056  236058  236062  236064  236068  236070  236072  236073  236074  236076  236077  236078  236080  236082  236086  236088  236092  236094  236098  236104  236106  236112  236116  236118  236122  236128  236134  236136  236142  236146  236148  236154  236158  236164  236172  266669 

科目: 来源: 题型:解答题

17.设命题p:$\frac{m-2}{m-3}$≤$\frac{2}{3}$;命题 q:关于x的不等式x2-4x+m2≤0的解集是空集,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知a=$\int_{-1}^1{\sqrt{1-{x^2}}dx}$,则${[{(a+2-\frac{π}{2})x-\frac{1}{x}}]^6}$展开式中的常数项为-160.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图是一个缆车示意图,该缆车的半径为4.8m,圆上最低点与地面的距离为0.8m,缆车每60s转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面的距离为hm.
(1)求h与θ之间的函数解析式;
(2)设从OA开始转动,经过ts达到OB,求h与之间的函数解析式,并计算经过45s后缆车距离地面的高度.

查看答案和解析>>

科目: 来源: 题型:选择题

14.一个几何体的三视图如图所示,正视图和侧视图都是等边三角形,且该几何体的四个点在空间直角坐标系O-xyz中的坐标分别是(0,0,0),(2,0,0),(0,2,0),则第五个顶点的坐标可能为(  )
A.(1,1,1)B.(1,1,$\sqrt{2}$)C.(1,1,$\sqrt{3}$)D.(2,2,$\sqrt{3}$)

查看答案和解析>>

科目: 来源: 题型:填空题

13.△ABC的三边分别为a,b,c.若a=2,b=3,c=4,则其最小角的余弦值为$\frac{7}{8}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知数列{an}满足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

11.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(I)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
(Ⅱ)若对年龄在[5,15)的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?参考数据:P(K2≥3.841)=0.050,P(K2≥6.635)=0.010,P(K2≥10.828)=0.001  
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn(n∈N*),且an=2n+λ,若数列{Sn}为递增数列,则实数λ的取值范围为(  )
A.(-4,+∞)B.[-4,+∞)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系xoy中,直线l的参数方程为:$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ=sinθ,直线l与曲线C交于M,N两点(点M在点N的上方).
(Ⅰ)若a=0,求M,N两点的极坐标;
(Ⅱ)若P(a,0),且$|PM|+|PN|=8+2\sqrt{3}$,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知二次函数f(x)同时满足;①f(x+1)-f(x)=2x;②x∈R,恒有f(x)≥x2-x+1成立;③当x≥0时,f(x)≤2x
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案