相关习题
 0  247608  247616  247622  247626  247632  247634  247638  247644  247646  247652  247658  247662  247664  247668  247674  247676  247682  247686  247688  247692  247694  247698  247700  247702  247703  247704  247706  247707  247708  247710  247712  247716  247718  247722  247724  247728  247734  247736  247742  247746  247748  247752  247758  247764  247766  247772  247776  247778  247784  247788  247794  247802  266669 

科目: 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=3,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.60°B.30°C.150°D.120°

查看答案和解析>>

科目: 来源: 题型:选择题

7.等差数列{an}的前n项和为Sn,S5=-5,S9=-45,则a4的值为(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=4\overrightarrow{e_1}+3\overrightarrow{e_2}$,其中$\overrightarrow{e_1}$=(1,0),$\overrightarrow{e_2}$=(0,1),计算$\overrightarrow a$•$\overrightarrow b$,|$\overrightarrow a$+$\overrightarrow b$|的值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若a是复数z1=$\frac{1+i}{2-i}$的实部,b是复数z2=(1-i)3的虚部,则ab等于$-\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.(文科)设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(Ⅰ)确定a的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)=$\frac{1}{2}$x2-ax+2lnx(a∈R)在x=1时取得极值.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为(  )
A.24种B.48种C.72种D.96种

查看答案和解析>>

科目: 来源: 题型:选择题

1.若(3$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n 的展开式中各项系数之和为256,则展开式的常数项是(  )
A.第3项B.第4项C.第5项D.第6项

查看答案和解析>>

科目: 来源: 题型:解答题

20.(1)已知抛物线的顶点在原点,准线方程为x=-$\frac{1}{4}$,求抛物线的标准方程;
(2)已知双曲线的焦点在x轴上,且过点($(-\sqrt{2}$,-$\sqrt{3}$),($\frac{\sqrt{15}}{3}$,$\sqrt{2}$),求双曲线的标准方程.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知椭圆 $\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),点(0,-3)在椭圆上,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{{18}^{2}}$=1B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1C.$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案