相关习题
 0  249517  249525  249531  249535  249541  249543  249547  249553  249555  249561  249567  249571  249573  249577  249583  249585  249591  249595  249597  249601  249603  249607  249609  249611  249612  249613  249615  249616  249617  249619  249621  249625  249627  249631  249633  249637  249643  249645  249651  249655  249657  249661  249667  249673  249675  249681  249685  249687  249693  249697  249703  249711  266669 

科目: 来源: 题型:解答题

11.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间;
(3)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,实数m满足:m-f(x)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.以过点A(0,4)的直线的斜率t为参数,写出椭圆4x2+y2=16的参数方程.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知点P的柱坐标为($\sqrt{2}$,$\frac{π}{4}$,5),点B的球坐标为($\sqrt{6}$,$\frac{π}{3}$,$\frac{π}{6}$),则这两个点在空间直角坐标系中的点的坐标为(  )
A.点P(5,1,1),点B($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$)B.点P(1,1,5),点B($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$)
C.点P($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$),点P(1,1,5)D.点P(1,1,5),点B($\frac{\sqrt{6}}{2}$,$\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$)

查看答案和解析>>

科目: 来源: 题型:填空题

8.当0<α<$\frac{π}{4}$时,sinα<cosα(比较大小)

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为1的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方)
(1)求椭圆C的方程;
(2)求△PQT的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右顶点是A,上、下两个顶点分别为B、D,四边形OANB是矩形(O为原点),点E、M分别为线段OA、AN的中点.
(1)证明:直线DE与直线BM的交点在椭圆C上;
(2)若P(1,$\frac{3}{2}$)、Q(1,-$\frac{3}{2}$)是椭圆C上两点,R、S是椭圆C上位于直线PQ两侧的两动点.
①若直线RS的斜率为$\frac{1}{2}$,求四边形RPSQ面积的最大值;
②当R、S运动时,满足∠RPQ=∠SPQ,试问直线RS的斜率是否为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数f(x)=2ex-mx在区间[-1,0]上不单调,则实数m的取值范围为[$\frac{2}{e}$,2].

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}{x}^{2}$-ax-a(a>0),求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

3.求函数f(x)=ln(x-1)-k(x-1)+1的单调性.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1.
(1)若l:y=kx+m(mk≠0)与C交于不同的两点M,N都在以A(0,-1)为圆心的圆上,求m的取值范围;
(2)若将(1)中的“双曲线C”改为““双曲线C的右支”,其余条件不变,求m的取值范围.

查看答案和解析>>

同步练习册答案