相关习题
 0  251734  251742  251748  251752  251758  251760  251764  251770  251772  251778  251784  251788  251790  251794  251800  251802  251808  251812  251814  251818  251820  251824  251826  251828  251829  251830  251832  251833  251834  251836  251838  251842  251844  251848  251850  251854  251860  251862  251868  251872  251874  251878  251884  251890  251892  251898  251902  251904  251910  251914  251920  251928  266669 

科目: 来源: 题型:选择题

15.已知锐角α满足$cos2α=sin(\frac{π}{4}+α)$,则sin2α等于(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=kex-$\frac{1}{2}$x2(k∈R).
(1)若x轴是曲线y=f(x)的一条切线,求实数k的值;
(2)设k<0,求函数g(x)=f′(x)+e2x+x在区间(-∞,ln 2]上的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知定义在R上的函数f(x)是奇函数,对x∈R都有f(2+x)=-f(2-x),则f(2016)=(  )
A.2B.-2C.4D.0

查看答案和解析>>

科目: 来源: 题型:选择题

12.函数y=x2-x+2在[a,+∞)上单调递增是函数y=ax为单调递增函数的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)当a=-1时,证明h(x)是奇函数;
(Ⅱ)若关于x的方程f(x)=log3g(x)有两个不等实数根,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设集合A={y|y=2x,1≤x≤2},B={x|log3x<1},C={x|t+1<x<2t,t∈R}.
(1)求A∩B;
(2)若A∩C=C,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

9.若函数f(x)=$\left\{\begin{array}{l}{\frac{2b-1}{x}+b+3,x>1}\\{-{x}^{2}+(2-b)x,x≤1}\end{array}\right.$在x∈R内满足:对于任意的实数x1≠x2,都有(x1-x2)(f(x1)-f(x2))>0成立,则实数b的取值范围为[-$\frac{1}{4}$,0].

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知集合A={1,2},B={x|x2+ax+b=0},若A=B,则a+b=-1.

查看答案和解析>>

科目: 来源: 题型:选择题

7.对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2) 
②f(x1•x2)=f(x1)+f(x2
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0        
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
当f(x)=log${\;}_{\frac{1}{2}}$x时,上述结论中正确的序号是(  )
A.①③B.②③C.②④D.②③④

查看答案和解析>>

科目: 来源: 题型:选择题

6.函数f(x)=($\frac{1}{2}$)${\;}^{\sqrt{{x}^{2}-x-2}}$的单调递增区间为(  )
A.(-∞,-1]B.[2,+∞)C.(-∞,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案