相关习题
 0  251937  251945  251951  251955  251961  251963  251967  251973  251975  251981  251987  251991  251993  251997  252003  252005  252011  252015  252017  252021  252023  252027  252029  252031  252032  252033  252035  252036  252037  252039  252041  252045  252047  252051  252053  252057  252063  252065  252071  252075  252077  252081  252087  252093  252095  252101  252105  252107  252113  252117  252123  252131  266669 

科目: 来源: 题型:填空题

14.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则PM+PF1的最大值为15.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F,过点F的直线交椭圆于A,B两点,|AF|的最大值为M,|BF|的最小值为m,满足$M•m=\frac{3}{4}{a^2}$.
(Ⅰ)若线段AB垂直于x轴时,|AB|=$\frac{3}{2}$,求椭圆的方程;
(Ⅱ) 设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点,记△GFD的面积为S1,△OED的面积为S2,求$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过左焦点F1(-1,0)的直线与椭圆C交于M、N两点,且△F2MN的周长为8;过点P(4,0)且不与x轴垂直的直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围;
(Ⅲ)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点,上顶点分别为M、N,过其左焦点F作直线l垂直于x轴,且与椭圆在第二象限交于点P,$\overrightarrow{MN}$=λ$\overrightarrow{OP}$
(1)求证:a=$\sqrt{b}$;
(2)若椭圆的弦AB过点E(2,0)并与坐标轴不垂直,设点A关于x轴的对称点A,直线A1B与x轴交于点R(5,0),求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.
(Ⅰ)若三角形AF1F2的周长为4$\sqrt{3}$+6,求椭圆的标准方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知F1,F2为椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的左、右焦点,点E是椭圆C上的动点,$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最大值、最小值分别为(  )
A.9,7B.8,7C.9,8D.17,8

查看答案和解析>>

科目: 来源: 题型:填空题

8.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设椭圆M:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)已知$A(-2,\sqrt{2})$,F是椭圆M的下焦点,在椭圆M上是否存在点P,使△AFP的周长最大?若存在,请求出△AFP周长的最大值,并求此时△AFP的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线l:y=kx+$\sqrt{3}$与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数$f(x)=x-\frac{16}{x}$,则不等式xf(x)≤0的解集为(  )
A.[-4,0)∪(0,4]B.(-4,4)C.[-4,4]D.(-∞,4)∪(4,+∞)

查看答案和解析>>

同步练习册答案