相关习题
 0  252017  252025  252031  252035  252041  252043  252047  252053  252055  252061  252067  252071  252073  252077  252083  252085  252091  252095  252097  252101  252103  252107  252109  252111  252112  252113  252115  252116  252117  252119  252121  252125  252127  252131  252133  252137  252143  252145  252151  252155  252157  252161  252167  252173  252175  252181  252185  252187  252193  252197  252203  252211  266669 

科目: 来源: 题型:选择题

19.已知幂函数y=f(x)的图象过(9,3)点,则$f(\frac{1}{3})$=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列各组函数表示同一函数的是(  )
A.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$B.$f(x)=\sqrt{x^2},g(x)=|x|$
C.f(1)=1,g(x)=x0D.$f(x)=x+1,g(x)=\frac{{{x^2}-1}}{x-1}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是同一个平面α内的两个向量,则(  )
A.平面α内任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
B.若存在实数λ1,λ2,使λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$=0,则λ12=0
C.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则空间任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
D.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则平面任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)

查看答案和解析>>

科目: 来源: 题型:选择题

16.如果执行如图所示的程序,那么输出的值k=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且$f(x)=\vec a•\vec b$.
(1)求函数f(x)的解析式;并求其最小正周期和对称中心.
(2)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:
①f(x)=x2;   ②f(x)=2x;    ③f(x)=$\sqrt{x}$;    ④f(x)=lnx.
则其中是“保等比数列函数”的f(x)的序号为①③.

查看答案和解析>>

科目: 来源: 题型:选择题

13.下列运用基本不等式求最值,使用正确的个数是(  )
①已知ab≠0,由$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2,求得$\frac{a}{b}$+$\frac{b}{a}$的最小值为2
②由y=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2,求得y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值为2
③已知x>1,由y=x+$\frac{2}{x-1}$≥2$\sqrt{\frac{2x}{x-1}}$,当且仅当x=$\frac{2}{x-1}$即x=2时等号成立,把x=2代入2$\sqrt{\frac{2x}{x-1}}$得y的最小值为4.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知点(-3,-1)在直线3x-2y-a=0的上方,则a的取值范围为(  )
A.a>-7B.a≥-7C.a<-7D.a≤-7

查看答案和解析>>

科目: 来源: 题型:解答题

11.当x满足log${\;}_{\frac{1}{2}}$(3-x)≥-2时,求函数y=4-x-2-x+1的最值及相应的x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{x-1},x<0}\\{(x-1)^{2},x≥0}\end{array}\right.$,若直线y=m与函数f(x)的图象有三个不同的交点,则实数m的取值范围(0,1).

查看答案和解析>>

同步练习册答案