科目: 来源: 题型:
【题目】已知函数f(x)=lnx+
,(a>0)
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间[1,+∞)上单调递增,求a的取值范围;
(3)求函数f(x)在区间[1,2]的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅱ)现已知A,B,C三人获得优秀的概率分别为
,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附:
,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=x2+2ax﹣a﹣1,x∈[0,2],a为常数.
(1)用g(x)表示f(x)的最小值,求g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)﹣m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx有两个极值点x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函数g(x)=f(x)﹣f(x0),则g(x)( )
A.恰有一个零点
B.恰有两个零点
C.恰有三个零点
D.至多两个零点
查看答案和解析>>
科目: 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速
(单位:
)与其耗氧量单位数
之间的关系可以表示为函数
,其中
为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为
时,其耗氧量为2700个单位.
(1)求出游速
与其耗氧量单位数
之间的函数解析式;
(2)求当一条鲑鱼的游速不高于
时,其耗氧量至多需要多少个单位?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com