科目: 来源: 题型:
【题目】对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+
x,求f(2
)的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=
,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】几位同学在研究函数
时,给出了下面几个结论:
①
的单调减区间是
,单调增区间是
;
②若
,则一定有
;
③函数
的值域为
;
④若规定
,
,则
对任意
恒成立.
上述结论中正确的是____
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一次函数
是
上的减函数,
,且 f [ f(x)]=16x-3.
(1)求
;
(2)若
在(-2,3)单调递增,求实数
的取值范围;
(3)当
时,
有最大值1,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2
sin(
+
)sin(
﹣
)﹣sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=
对称.
(1)若存在x∈[0,
),使等式[g(x)]2﹣mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,
]时不等式f(x)+ag(﹣x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10
米,记∠BHE=θ. ![]()
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com