相关习题
 0  259385  259393  259399  259403  259409  259411  259415  259421  259423  259429  259435  259439  259441  259445  259451  259453  259459  259463  259465  259469  259471  259475  259477  259479  259480  259481  259483  259484  259485  259487  259489  259493  259495  259499  259501  259505  259511  259513  259519  259523  259525  259529  259535  259541  259543  259549  259553  259555  259561  259565  259571  259579  266669 

科目: 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1,底面△ABC的边长AB=1,侧棱长为,P是A1B1的中点,E、F、G分别是AC,BC,PC的中点.

(1)求FG与BB1所成角的大小;

(2)求证:平面EFG∥平面ABB1A1

查看答案和解析>>

科目: 来源: 题型:

【题目】设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2+2ax+3a+2.

(1)若函数f(x)的值域为[0,+∞),求a的值;

(2)若函数f(x)的函数值均为非负实数,求g(a)=2-a|a+3|的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法中,正确的是______(填上所有符合条件的序号)

①y=e-x在R上为增函数

②任取x>0,均有3x>2x

③函数y=f(x)的图象与直线x=a可能有两个交点

④y=2|x|的最小值为1;

⑤与y=3x的图象关于直线y=x对称的函数为y=log3x.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)判断fx)的奇偶性,说明理由;

(2)当x>0时,判断fx)的单调性并加以证明;

(3)若f(2t)-mft)>0对于t∈(0,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C: =1(a>b>0)的离心率是 ,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线l与y轴交于点G,记△PFG的面积为S1 , △PDM的面积为S2 , 求 的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)讨论f(x)的单调性;
(2)当a=1时,证明f(x)>f′(x)+ 对于任意的x∈[1,2]成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=

(1)若f(2)=a,求a的值;

(2)当a=2时,若对任意互不相等的实数x1x2∈(mm+4),都有>0成立,求实数m的取值范围;

(3)判断函数gx)=fx)-x-2aa<0)在R上的零点的个数,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 ,乙每轮猜对的概率是 ;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(1)“星队”至少猜对3个成语的概率;
(2)“星队”两轮得分之和为X的分布列和数学期望EX.

查看答案和解析>>

同步练习册答案