科目: 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=
+x﹣a(a∈R). (Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1 , y=g(x)在点N处的切线为l2 .
(ⅰ)当m=e时,若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)设函数h(x)=f(x)﹣g(x)在其定义域内恰有两个不同的极值点x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆W:
(b>0)的一个焦点坐标为
.
(Ⅰ)求椭圆W的方程和离心率;
(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=﹣1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点. ![]()
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B﹣C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题. ![]()
(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}是首项
,公比
的等比数列.设
(n∈N*). (Ⅰ)求证:数列{bn}为等差数列;
(Ⅱ)设cn=an+b2n , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1 , C2之间的距离,记作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,则d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,则d(C3 , C4)= .
查看答案和解析>>
科目: 来源: 题型:
【题目】将函数f(x)=cos2x图象上所有点向右平移
个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】若无穷数列{an}满足:k∈N* , 对于
,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“
”.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M
在椭圆E上.
(1)求椭圆E的方程;
(2)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB均与圆x2+y2=r2(r>0)相切,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ex﹣alnx﹣a. (Ⅰ)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:对于a∈(0,e),f(x)在区间
上有极小值,且极小值大于0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com