精英家教网 > 高中数学 > 题目详情

【题目】若无穷数列{an}满足:k∈N* , 对于 ,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“ ”.

【答案】(Ⅰ)解:∵{an}具有性质“P(3,2,0)”,∴an+3﹣an=0,n≥2. 由a2=3,得a2=a5=a8=3.
由a4=5,得a7=5.
∵a6+a7+a8=18,∴a6=10.
即a3=10;
(Ⅱ)解:{an}不具有性质“P(2,1,0)”.
设等差数列{bn}的公差为d,由b1=2,b3=8,得2d=8﹣2=6,则d=3.
∴bn=3n﹣1.
设等比数列{cn}的公比为q,由c3=2,c1=8,得
,又q>0,∴q= ,故
∴an=bn+cn=3n﹣1+24﹣n
若{an}具有性质“P(2,1,0)”,则an+2﹣an=0,n≥1.
∵a2=9,a4=12,∴a2≠a4
故{an}不具有性质“P(2,1,0)”.
(Ⅲ)证明:∵{an}具有性质“P(i,2,d1)”,∴an+i﹣an=d1 , n≥2.①
∵{an}具有性质“P(j,2,d2)”,∴an+j﹣an=d2 , n≥2.②
∵i,j∈N* , i<j,i,j互质,
∴由①得am+ji=am+jd1 , 由②得am+ij=am+id2
∴am+jd1=am+id2 , 即
②﹣①得: ,n≥2,

即{an}具有性质“ ”.
【解析】(Ⅰ)由{an}具有性质“P(3,2,0)”,得an+3﹣an=0,n≥2,然后结合已知依次求得a8 , a7的值,在结合a6+a7+a8=18求得a3;(Ⅱ)设等差数列{bn}的公差为d,已知求得d=3.得bn=3n﹣1.设等比数列{cn}的公比为q,由已知求得q,得 ,代入an=bn+cn . 举反例说明{an}不具有性质“P(2,1,0)”;(Ⅲ)由{an}具有性质“P(i,2,d1)”,得an+i﹣an=d1 , n≥2.由{an}具有性质“P(j,2,d2)”,得an+j﹣an=d2 , n≥2.结合i,j∈N* , i<j,i,j互质,联立上两式可得 ,说明{an}具有性质“ ”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若 ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1在平面直角坐标系中的参数方程为 (t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为奇函数.
(1)则a=
(2)函数g(x)=f(x)﹣ 的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,2asinB=b. (Ⅰ)求∠A的大小;
(Ⅱ)求 sinB﹣cos(C+ )的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B﹣C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4. (Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设min{m,n}表示m、n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=min{( x2 , log2(4x)}(x>0),若x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为(
A.﹣4
B.﹣3
C.﹣2
D.0

查看答案和解析>>

同步练习册答案