精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若 ,求f(x)的值域.

【答案】解:(Ⅰ)∵f(x)=2 sinxcosx﹣2cos2x= sin2x﹣(1+cos2x)
=2sin(2x﹣ )﹣1,
∴函数f(x)的最小正周期T=π;
由2kπ+ ≤2x﹣ ≤2kπ+ 得:kπ+ ≤x≤kπ+ ,k∈Z.
∴函数f(x)的单调递减区间为[kπ+ ,kπ+ ]k∈Z.
(Ⅱ)∵x∈[0, ],
∴2x﹣ ∈[﹣ ],
∴﹣ ≤sin(2x﹣ )≤1,
∴﹣2≤2sin(2x﹣ )﹣1≤1,即f(x)∈[﹣2,1].
∴f(x)的值域为[﹣2,1]
【解析】(Ⅰ)利用二倍角的正弦与余弦及辅助角公式可求得f(x)=2sin(2x﹣ )﹣1,从而可求其周期及单调递减区间;(Ⅱ)x∈[0, ]2x﹣ ∈[﹣ ],利用正弦函数的单调性与最值即可求得f(x)的值域.
【考点精析】关于本题考查的两角和与差的正弦公式和二倍角的正弦公式,需要了解两角和与差的正弦公式:;二倍角的正弦公式:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中既是奇函数又在区间(0,+∞)上单调递减的是(
A.y=ex
B.y=ln(﹣x)
C.y=x3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).
(1)判断f(x)=3x+2是否属于集合M,并说明理由;
(2)若 属于集合M,求实数a的取值范围;
(3)若f(x)=2x+bx2 , 求证:对任意实数b,都有f(x)∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数y=log0.5(x2+2x+a)的值域R,命题q:函数y=x2a5在(0,+∞)上是减函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域(
A.
B.[﹣1,4]
C.[﹣5,5]
D.[﹣3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到 函数的图象,只需把y=3sinx上所有的点(
A.先把横坐标缩短到原来的 倍,然后向左平移 个单位
B.先把横坐标缩短到原来的2倍,然后向左平移 个单位
C.先把横坐标缩短到原来的2倍,然后向左右移 个单位
D.先把横坐标缩短到原来的 倍,然后向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形AOB所在圆的半径是1,弧AB的中点为C,动点M,N分别在OA,OB上运动,且满足OM=BN,∠AOB=120°.
(Ⅰ)设 ,若 ,用a,b表示
(Ⅱ)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设递增的等比数列{an}的前n项和为Sn , 已知2(an+an+2)=5an+1 , 且
(1)求数列{an}通项公式及前n项和为Sn
(2)设 ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:k∈N* , 对于 ,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“ ”.

查看答案和解析>>

同步练习册答案