【题目】下列函数中既是奇函数又在区间(0,+∞)上单调递减的是( )
A.y=e﹣x
B.y=ln(﹣x)
C.y=x3
D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+ )+m(m∈R),当x∈[0, ]时,f(x)的最小值为﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题。
(1)已知椭圆C: =1(a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线 x﹣ y+12=0相切.求椭圆C的方程;
(2)已知⊙A1:(x+2)2+y2=12和点A2(2,0),求过点A2且与⊙A1相切的动圆圆心P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD中,底面ABCD是边长为4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND. (Ⅰ)求证:CN∥面BDM;
(Ⅱ)求直线SD与平面BDM所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集合M的若干个子集的集合称为集合M的一个子集族.对于集合{1,2,3…n}的一个子集族D满足如下条件:若A∈D,BA,则B∈D,则称子集族D是“向下封闭”的. (Ⅰ)写出一个含有集合{1,2}的“向下封闭”的子集族D并计算此时 的值(其中|A|表示集合A中元素的个数,约定||=0; 表示对子集族D中所有成员A求和);
(Ⅱ)D是集合{1,2,3…n}的任一“向下封闭的”子集族,对A∈D,记k=max|A|, (其中max表示最大值),
(ⅰ)求f(2);
(ⅱ)若k是偶数,求f(k).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2. (Ⅰ)求证:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E为直二面角,
( i)求直线AC与平面CDE所成角的大小;
( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集为[﹣6,2],求实数a的值;
(Ⅱ)当a=2时,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com