精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4cosxsin(x+ )+m(m∈R),当x∈[0, ]时,f(x)的最小值为﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

【答案】解:(Ⅰ)∵f(x)=4cosxsin(x+ )+m =4cosx(sinxcos +cosxsin )+m
= sin2x+2cos2x+m
= sin2x+cos2x+1+m
=2sin(2x+ )+m+1.
∵x∈[0, ],2x+ ∈[ ],可得:2sin(2x+ min=﹣1,
∴f(x)=﹣1=﹣1+m+1,解得:m=﹣1.
(Ⅱ)∵由(Ⅰ)可得:f(x)=2sin(2x+ ),
∴2sin(2C+ )=1,
∵C∈(0,π),可得:2C+ ∈( ),
∴2C+ = ,解得:C=
如图,设BD=BC=x,则AB=5﹣x,
∵在△ACB中,由余弦定理可得:cosC= = ,解得x=
∴cosA= = ,可得:sinA= =
∴SACD= ACADsinA= =

【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+ )+m+1.由x∈[0, ],利用正弦函数的性质可求2sin(2x+ min=﹣1,结合已知可求m的值.(Ⅱ)由(Ⅰ)可得2sin(2C+ )=1,结合范围C∈(0,π),可求C= ,设BD=BC=x,则AB=5﹣x,在△ACB中,由余弦定理可解得x,进而由余弦定理可求cosA,利用同角三角函数基本关系式可求sinA,利用三角形面积公式即可计算得解.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)图象如图,f'(x)是f(x)的导函数,则下列数值排序正确的是(
A.0<f'(2)<f'(3)<f(3)﹣f(2)
B.0<f'(3)<f'(2)<f(3)﹣f(2)
C.0<f'(3)<f(3)﹣f(2)<f'(2)
D.0<f(3)﹣f(2)<f'(2)<f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

A

4次

6次

2次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1 , x2 , x3 , 则它们的大小关系为(
A.s1>s2>s3
B.s1>s3>s2
C.s3>s2>s1
D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线E:x2=4y的焦点F是椭圆 (a>b>0)的一个顶点.过点F且斜率为k(k≠0)的直线l交椭圆C于另一点D,交抛物线E于A、B两点,线段DF的中点为M,直线OM交椭圆C于P、Q两点,记直线OM的斜率为k',满足
(1)求椭圆C的方程;
(2)记△PDF的面积为S1 , △QAB的面积为S2 , 设 ,求实数λ的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx+2,g(x)=x2﹣mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[ ,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD=
(I)求证:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下面一组等式: S1=1
S2=2+3=5
S3=4+5+6=15
S4=7+8+9+10=34
S5=11+12+13+14+15=65
S6=16+17+18+19+20+21=111
S7=22+23+24+25+26+27+28=175

可得S1+S3+S5+…+S2n1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中既是奇函数又在区间(0,+∞)上单调递减的是(
A.y=ex
B.y=ln(﹣x)
C.y=x3
D.

查看答案和解析>>

同步练习册答案