相关习题
 0  260585  260593  260599  260603  260609  260611  260615  260621  260623  260629  260635  260639  260641  260645  260651  260653  260659  260663  260665  260669  260671  260675  260677  260679  260680  260681  260683  260684  260685  260687  260689  260693  260695  260699  260701  260705  260711  260713  260719  260723  260725  260729  260735  260741  260743  260749  260753  260755  260761  260765  260771  260779  266669 

科目: 来源: 题型:

【题目】某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:
(1)求证:b=﹣
(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2
(1)求角A的大小;
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知无穷数列{an}的各项都是正数,其前n项和为Sn , 且满足:a1=a,rSn=anan+1﹣1,其中a≠1,常数r∈N;
(1)求证:an+2﹣an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N* , 都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=23n1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分10)

某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400/m2,房屋侧面的造价为150/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.

1)把房屋总造价表示成的函数,并写出该函数的定义域.

2)当侧面的长度为多少时,总造价最底?最低总造价是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]时,求f(x)的值域;
(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);
(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2 , n2],若存在,求出m、n的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:
(1)求证:b=﹣
(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2
(1)求角A的大小;
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】设向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则 的最小值为

查看答案和解析>>

同步练习册答案