【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2; ![]()
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).
【答案】
(1)解:如图,因为AB⊥平面BCD,
所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,
因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,
由AB=BC=2,得AD=4,AC=2
,
∴BD=
=2
,CD=
=2
,
则VA﹣BCD=
=
= ![]()
= ![]()
(2)解:以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,
建立空间直角坐标系,
![]()
则A(0,2,2),D(2
,0,0),C(0,0,0),B(0,2,0),M(
),
=(2
,﹣2,﹣2),
=(
),
设异面直线AD与CM所成角为θ,
则cosθ=
=
=
.
θ=arccos
.
∴异面直线AD与CM所成角的大小为arccos
.
【解析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.
【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1 , k2 .
(1)求椭圆C的方程;
(2)当r变化时,①求k1k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
使得
,那么称
为
的线性函数.
(1)下面给出两组函数,判断
是否分别为
的线性函数?并说明理由;
第一组:![]()
第二组::![]()
(2)设
,线性函数为
.若等式
在
上有解,求实数
的取值范围;
(3)设
,取
.线性函数
图像的最低点为
.若对于任意正实数
且
.试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①存在实数α使
.
②直线
是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x1)+f(x2)>﹣5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC﹣A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则
的取值范围是( ) ![]()
A.(1,
)
B.(
,
)
C.(
,
)
D.(
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为
(球的体积公式为
R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com