精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:
①存在实数α使
②直线 是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④

【答案】B
【解析】解:①∵ ,∴①错误;
②∵y=sinx图象的对称轴方程为 ,k=﹣1, ,∴②正确;
③根据余弦函数的性质可得y=cos(cosx)的最大值为ymax=cos0=1,ymin=cos(cos1),其值域是[cos1,1],③正确;
④不妨令 ,满足α,β都是第一象限角,且α>β,但tanα<tanβ,④错误;
故选B.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和正弦函数的对称性的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:;正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知D(x0 , y0)为圆O:x2+y2=12上一点,E(x0 , 0),动点P满足 = + ,设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若动直线l:y=kx+m与曲线C相切,过点A1(﹣2,0),A2(2,0)分别作A1M⊥l于M,A2N⊥l于N,垂足分别是M,N,问四边形A1MNA2的面积是否存在最值?若存在,请求出最值及此时k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,若输入的n为6,则输出的p为(
A.8
B.13
C.29
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,已知点P(0, ),曲线C的参数方程为 (φ为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
(Ⅰ)判断点P与直线l的位置关系并说明理由;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1),a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x2)≥( ﹣1)x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,输出i和S的值分别为(
A.2,15
B.2,7
C.3,15
D.3,7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 ,(α为参数),以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,直线l的极坐标方程为
(1)求曲线C的极坐标方程;
(2)设P为曲线C上一点,Q为直线l上一点,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案