【题目】已知函数y=f(x)是偶函数,当x>0时,;当x∈[﹣3,﹣1]时,记f(x)的最大值为m,最小值为n,则m﹣n=________
【答案】1
【解析】
先利用偶函数的定义:f(﹣x)=f(x),结合当x>0时,的解析式,求出函数在[﹣3,﹣1]上的解析式,再利用导数求出函数的最值即得m﹣n.
当x∈[﹣3,﹣1]时,﹣x∈[1,3]
∵当x>0时,f(x)
∴f(﹣x)
∵函数y=f(x)是偶函数
∴f(x),x∈[﹣3,﹣1]
∵f′(x)=﹣1
当﹣3≤x<﹣2时,f′(x)<0,函数在[﹣3,﹣2)上是减函数;当﹣2<x<﹣1时,f′(x)>0,函数在[﹣2,﹣1]上是增函数,
所以当x=﹣2时,函数有最小值4;当x=﹣3时f(﹣3);
当x=﹣1时,f(﹣1)=5所以函数的最大值为5
所以m=5,n=4,
故m﹣n=1,
故答案为1.
科目:高中数学 来源: 题型:
【题目】函数 的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象( )
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,已知点P(0, ),曲线C的参数方程为 (φ为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ= .
(Ⅰ)判断点P与直线l的位置关系并说明理由;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在上的函数满足条件:存在实数且,使得:
⑴ 任取,有(是常数);
⑵ 对于内任意,当,总有.
我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2) 已知是“平顶型”函数,求出的值.
(3)对于(2)中的函数,若在上有两个不相等的根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1;
(2)当 为何值时,有PN∥平面BMC1?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的值域为.
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在的单调性,并用单调性的定义证明你的结论;
(3)求出在上的最小值,并求的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com