科目: 来源: 题型:
【题目】已知函数f(x)=sinx.若存在x1 , x2 , ,xm满足0≤x1<x2<<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|++|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
﹣
,若对任意的x1 , x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则实数a的取值范围为( )
A.[﹣
,
]
B.[﹣
,
]
C.[﹣
,
]
D.[﹣e2 , e2]
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,则cosA的值所在区间为( )
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(x+a)ln(x+a),g(x)=﹣
+ax.
(1)函数h(x)=f(ex﹣a)+g'(ex),x∈[﹣1,1],求函数h(x)的最小值;
(2)对任意x∈[2,+∞),都有f(x﹣a﹣1)﹣g(x)≤0成立,求a的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C1:x2+y2=r2(r>0)与直线l0:y=
相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足
,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠BCD=
,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF. ![]()
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com