科目: 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为
(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=
+c(e=2.71828…是自然对数的底数,c∈R).
(Ⅰ)求f(x)的单调区间、最大值;
(Ⅱ)讨论关于x的方程|lnx|=f(x)根的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,侧棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.![]()
(1)求证:AM∥平面SCD;
(2)求平面SCD与平面SAB所成的二面角的余弦值;
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市举行“中学生诗词大赛”海选,规定:成绩大于或等于90分的具有参赛资格.某校有800名学生参加了海选,所有学生的成绩均在区间[30,150]内,其频率分布直方图如图:
(Ⅰ)求获得参赛资格的人数;
(Ⅱ)若大赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为
,求甲在初赛中答题个数X的分布列及数学期望E(X)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,x∈R,ω>0.
(1)求函数f(x)的值域;
(2)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为
,求函数y=f(x)的单调区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】等比数列{an}的各项均为正数,且
.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列
的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的三个内角A、B、C所对的边长分别是a、b、c,且
,若将函数f(x)=2sin(2x+B)的图象向右平移
个单位长度,得到函数g(x)的图象,则g(x)的解析式为( )
A.![]()
B.![]()
C.2sin2x
D.2cos2x
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F1(﹣1,0),F2(1,0)分别是椭圆C:
=1(a>0)的左、右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别在直线x=﹣2和x=2上,且AF1⊥BF1 .
(ⅰ)当△ABF1为等腰三角形时,求△ABF1的面积;
(ⅱ)求点F1 , F2到直线AB距离之和的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PC⊥平面ABCD,点E在棱PA上. ![]()
(Ⅰ)求证:直线BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求证:AE=EP;
(Ⅲ)是否存在点E,使得四面体A﹣BDE的体积等于四面体P﹣BDC的体积的
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com