科目: 来源: 题型:
【题目】如图,在三棱锥S-ABC中,SA ⊥底面ABC,AC=AB=SA=2,AC ⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(Ⅰ)求异面直线AF与DE所成角的余弦值;
(Ⅱ)求证:AF⊥平面SBC;
(Ⅲ)设G为线段DE的中点,求直线AG与平面SBC所成角的余弦值。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
(1)求这5天的平均发芽率;
(2)从3月1日至3月5日中任选2天,记发芽的种子数分别为
,
,用
的形式列出所有的基本事件,并求满足
的事件
的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)
(1)英语老师随机抽了
个单词进行检测,求至少有
个是后两天学习过的单词的概率;
(2)某学生对后两天所学过的单词每个能默写对的概率为
,对前两天所学过的单词每个能默写对的概率为
,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数
的分布列和期望。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知定圆
,定直线
过
的一条动直线
与直线
相交于
,与圆
相交于
两点,
是
中点.
![]()
(1)当
与
垂直时,求证:
过圆心
;
(2)当![]()
时,求直线
的方程;
(3)设![]()
,试问
是否为定值,若为定值,请求出
的值;若不为定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,函数
的图象在点
处的切线平行于
轴.
(Ⅰ)求
的值
(Ⅱ)设
,若
的所有零点中,仅有两个大于
,设为
,
(
)
(1)求证:
,
.
(2)过点
,
的直线的斜率为
,证明:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
为直角梯形,
,
,平面
底面
,
为
的中点,
是棱
上的点,
,
,
.
![]()
(1)求证:平面
平面
;
(2)若
为棱
的中点,求异面直线
与
所成角的余弦值;
(3)若二面角
大小为
,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)
的零点个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取
名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 |
| 5 |
|
第2组 |
| ① |
|
第3组 |
| 30 | ② |
第4组 |
| 20 |
|
第5组 |
| 10 |
|
![]()
(1)请先求出频率分布表中
位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在
名学生中随机抽取
名学生接受
考官进行面试,求:第
组至少有一名学生被考官
面试的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动圆
与圆
:
相切,且与圆
:
相内切,记圆心
的轨迹为曲线
.设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
,
两个不同的点.
(Ⅰ)求曲线
的方程;
(Ⅱ)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com