科目: 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中
且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中
且k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(1)若
,试求p关于k的函数关系式p=f(k).
(2)若p与干扰素计量
相关,其中
2)是不同的正实数,满足x1=1且
.
(i)求证:数列
为等比数列;
(ii)当
时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知曲线
的极坐标方程为
,以极点
为直角坐标原点,以极轴为
轴的正半轴建立平面直角坐标系
,将曲线
向左平移
个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的
,纵坐标保持不变,得到曲线![]()
(1)求曲线
的直角坐标方程;
(2)已知直线
的参数方程为
,(
为参数),点
为曲线
上的动点,求点
到直线
距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数![]()
(1)
是
的极小值点;
(2)函数
有且只有1个零点;
(3)
恒成立;
(4)设函数
,若存在区间
,使
在
上的值域是
,则
.
上述说法正确的序号为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生
到
之间取整数值的随机数,分别用
,
,
,
代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下
组随机数:
![]()
由此可以估计,恰好第三次就停止摸球的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(
为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点A的极坐标为
,直线l的极坐标方程为![]()
(1)求直线l的直角坐标方程与曲线C的普通方程;
(2)若B是曲线C上的动点,G为线段
的中点.求点G到直线l的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂改造一废弃的流水线M,为评估流水线M的性能,连续两天从流水线M生产零件上随机各抽取100件零件作为样本,测量其直径后,整理得到下表:记抽取的零件直径为X.
第一天
直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
第二天
直径/mm | 58 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 2 | 4 | 5 | 21 | 34 | 21 | 3 | 3 | 2 | 1 | 1 | 1 | 100 |
经计算,第一天样本的平均值
,标准差
第二天样本的平均值
,标准差![]()
(1)现以两天抽取的零件来评判流水线M的性能.
(i)计算这两天抽取200件样本的平均值
和标准差
(精确到0.01);
(ii)现以频率值作为概率的估计值,根据以下不等式进行评判(P表示相应事件的概率),①
;②
;③
评判规则为:若同时满足上述三个不等式,则设备等级为优;仅满足其中两个,则等级为良;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格,试判断流水线M的性能等级.
(2)将直径X在
范围内的零件认定为一等品,在
范围以外的零件认定为次品,其余认定为合格品.现从200件样本除一等品外的零件中抽取2个,设
为抽到次品的件数,求
分布列及其期望.
附注:参考数据:
,
,
;
参考公式:标准差
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com