精英家教网 > 高中数学 > 题目详情

【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

【答案】B

【解析】

随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.

随机模拟产生了以下18组随机数:

343 432 341 342 234 142 243 331 112

342 241 244 431 233 214 344 142 134

其中第三次就停止摸球的随机数有:142,112,241,142,共4个,

由此可以估计,恰好第三次就停止摸球的概率为p

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2BC=3EPD的中点,点FPC上,且

(Ⅰ)求证:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.

1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;

2)若过点(极坐标)且倾斜角为的直线l与曲线C交于MN两点,弦MN的中点为P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数的定义域是,对任意的,有.时,.给出下列四个关于函数的命题:

①函数是奇函数;

②函数是周期函数;

③函数的全部零点为

④当算时,函数的图象与函数的图象有且只有4个公共点.

其中,真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,在平行四边形中,Q上的点,过的平面分别交于点EF,且平面.

1)证明:

2)若Q的中点,与平面所成角的正弦值为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象相邻的最高点之间的距离为,将函数的图象向左平移个单位长度后得到函数的图象,且为奇函数,则(

A.的图象关于点对称B.的图象关于点对称

C.上单调递增D.上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,角的对边分别为.

(1)求角的大小;

(2)在锐角三角形中,角的对边分别为,若,求三角形的内角平分线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

同步练习册答案