精英家教网 > 高中数学 > 题目详情

【题目】在锐角三角形中,角的对边分别为.

(1)求角的大小;

(2)在锐角三角形中,角的对边分别为,若,求三角形的内角平分线的长.

【答案】1

2

【解析】

1)利用正弦定理将中的边转化为角,然后利用两角和的公式化简,根据锐角三角形确定角B.

2)根据,得到.,在三角形中,由余弦定理解得边,利用正弦定理解得 ,然后根据为内角平分线求解.

1)因为

所以

所以

所以

在锐角三角形中,,即

所以,所以

因为为锐角,所以

2)因为,所以.

在三角形中,由余弦定理得,

解得,.

时,

所以此时角为钝角,不符合三角形为锐角三角形,所以.

由正弦定理得,

所以

所以

因为为内角平分线,所以

所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)设直线轴的交点分别为,若点在曲线位于第一象限的图象上运动,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线,直线的参数方程为,(为参数).直线与曲线交于两点.

1)写出曲线的直角坐标方程和直线的普通方程.

2)设,若成等比数列,求和的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是三条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若是两条异面直线,,则

④若,则.

其中正确命题的序号是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e是自然对数的底数,a)在点处的切线方程是.

1)求函数的单调区间.

2)设函数,若上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的左,右焦点,椭圆上一点满足轴,.

1)求椭圆的标准方程;

2)过的直线交椭圆两点,当的内切圆面积最大时,求直线的方程.

查看答案和解析>>

同步练习册答案