科目: 来源: 题型:
【题目】已知函数
.
(1)当
时,若
,求
的取值范围;
(2)若定义在
上奇函数
满足
,且当
时,
,求
在
上的解析式;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若
,则
”的否命题是“若
,则
”
B.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题.
C.“
”是“
”的必要不充分条件
D.若“p或q”为真命题,则p,q至少有一个为真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马
中,底面ABCD是矩形.
平面
,
,
,以
的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
![]()
(1)证明:
平面
,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,
轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线
的极坐标方程为
,直线
过点
倾斜角为
.
(1)将曲线
的极坐标方程化为直角坐标方程,并写出直线
的参数方程;
(2)当
时,直线
交曲线
于
,
两点,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,经过左焦点
的最短弦长为3,离心率为![]()
(1)求椭圆的标准方程;
(2)过
的直线与
轴正半轴交于点
,与椭圆交于点
,
轴,过
的另一直线与椭圆交于
、
两点,若
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年春季受新冠肺炎疫情的影响,利用网络软件办公与学习成为了一种新的生活方式,网上办公软件的开发与使用成为了一个热门话题.为了解“钉钉”软件的使用情况,“钉钉”公司借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
35岁及以下 | 70 | 30 | 100 |
35岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为“钉钉”软件的使用情况与年龄有关?
(2)现从所抽取的35岁以上的网友中利用分层抽样的方法再抽取5人.从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用“钉钉”软件的概率.
参考公式:
,其中
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.已知过去10日,
、
、
三地新增疑似病例数据信息如下:
地:总体平均数为3,中位数为4;
地:总体平均数为2,总体方差为3;
地:总体平均数为1,总体方差大于0;
则
、
、
三地中,一定没有发生大规模群体感染的是__________地.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com