相关习题
 0  265007  265015  265021  265025  265031  265033  265037  265043  265045  265051  265057  265061  265063  265067  265073  265075  265081  265085  265087  265091  265093  265097  265099  265101  265102  265103  265105  265106  265107  265109  265111  265115  265117  265121  265123  265127  265133  265135  265141  265145  265147  265151  265157  265163  265165  265171  265175  265177  265183  265187  265193  265201  266669 

科目: 来源: 题型:

【题目】如图,摩天轮的半径,它的最低点距地面的高度忽略不计.地上有一长度为的景观带,它与摩天轮在同一竖直平面内,且.从最低点处逆时针方向转动到最高点处,记.

1)当时,求点距地面的高度

2)试确定的值,使得取得最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正三棱柱中,DEF分别为线段的中点.

1)证明:平面

2)证明:平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的点按坐标变换,得到曲线轴负半轴的交点,经过点且倾斜角为的直线与曲线的另一个交点为,与曲线的交点分别为(点在第二象限).

(Ⅰ)写出曲线的普通方程及直线的参数方程;

(Ⅱ)求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为,这两个相距为的惰性气体原子组成体系的能量中有静电相互作用能,其中为静电常量,分别表示两个原子负电中心相对各自原子核的位移,且都远小于,当远小于1时,,则的近似值为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:

由表中数据可得该市各类岗位的薪资水平高低情况为(

A.数据挖掘>数据开发>数据产品>数据分析

B.数据挖掘>数据产品>数据开发>数据分析

C.数据挖掘>数据开发>数据分析>数据产品

D.数据挖掘>数据产品>数据分析>数据开发

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为

1求椭圆的方程;

2的面积为其中为坐标原点时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年全国两会,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国会第二次会议,分别于201935日和33日在北京召开.为了了解哪些人更关注两会,某机构随机抽取了年龄在岁之间的200人进行调查,并按年龄绘制出频率分布直方图,如图.

若把年龄在区间内的人分别称为青少年”“中老年.经统计青少年中老年的人数之比为.其中青少年中有40人关注两会中老年中关注两会和不关注两会的人数之比为

1)求图中的值.

2)现采用分层抽样在中随机抽取8人作为代表,从8人中任选2人,求2人都是中老年的概率.

3)根据已知条件,完成下面的列联表,并判断能否有%的把握认为中老年青少年更加关注两会

关注

不关注

总计

青少年

中老年

总计

附:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,.

(1)求证:平面BCD;

(2)求异面直线AB与CD所成角的余弦值;

(3)求点E到平面ACD的距离。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面及直线,则下列说法错误的个数是( ).

①若直线与平面所成角都是,则这两条直线平行;②若直线与平面所成角都是,则这两条直线不可能垂直;③若直线垂直,则这两条直线与平面不可能都垂直;④若直线平行,则这两条直线中至少有一条与平面平行.

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】某生物兴趣小组对冬季昼夜温差与反季节新品种大豆发芽数之间的关系进行研究,他们分别记录了日至1125日每天的昼夜温差与实验室每天100颗种子的发芽数,得到以下表格

日期

1121

1122

11月23日

11月24日

11月25日

温差()

8

9

11

10

7

发芽数()

22

26

31

27

19

该兴趣小组确定的研究方案是:先从这5组数据中选取2组数据,然后用剩下的3组数据求线性回归方程,再用被选取的组数据进行检验.

1)求统计数据中发芽数的平均数与方差;

2)若选取的是1121日与1125日的两组数据,请根据1122 日至1124 日的数据,求出发芽数关于温差的线性回归方程,若由线性回归方程得到的估计数据与所选取的检验数据的误差不超过2,则认为得到的线性回归方程是可靠的,问得到的线性回归方程是否可靠?

附:线性回归方程 中斜率和截距最小二乘估法计算公式:

查看答案和解析>>

同步练习册答案