相关习题
 0  266084  266092  266098  266102  266108  266110  266114  266120  266122  266128  266134  266138  266140  266144  266150  266152  266158  266162  266164  266168  266170  266174  266176  266178  266179  266180  266182  266183  266184  266186  266188  266192  266194  266198  266200  266204  266210  266212  266218  266222  266224  266228  266234  266240  266242  266248  266252  266254  266260  266264  266270  266278  266669 

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一个长方形木块,三个侧面积分别为81224,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为(

A.2B.C.4D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数fx)=|x2|+|x+1|

1)解不等式fx≥4

2)若fx+fy≤6,求x+y的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=x22acoskπlnxkN*aRa0).

1)讨论函数fx)的单调性;

2)若k2018,关于x的方程fx)=2ax有唯一解,求a的值;

3)当k2019时,证明:对一切x∈(0+∞),都有成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.

1)求椭圆的方程;

2MN是椭圆上关于x轴对称的两点,P是椭圆上不同于MN的一点,直线PMPNx轴于DxD0ExE0),证明:xDxE为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数fx,已知对任意的a[13],若kRk0),恒有fx1fx2),则k的最小值是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)设点为棱中点,在内是否存在点,使得平面?若存在,请证明,若不存在,说明理由

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若函数在区间上是单调函数,试求的取值范围;

2)若函数在区间上恰有3个零点,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】基于移动互联技术的共享单车被称为新四大发明之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率进行了统计,结果如表:

月份

月份代码x

1

2

3

4

5

6

y

11

13

16

15

20

21

请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司201812月的市场占有率如果不能,请说明理由.

根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000辆和800辆的AB两款车型,报废年限各不相同考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:

报废年限

车型

1

2

3

4

总计

A

10

30

40

20

100

B

15

40

35

10

100

经测算,平均每辆单车每年可以为公司带来收入500不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?

参考数据:

参考公式:相关系数

回归直线方程中的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案