精英家教网 > 高中物理 > 题目详情

(14分)如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。

(1)求初始时刻通过电阻R的电流I的大小和方向;

(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;

(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。

 

【答案】

(1)电流大小I1=,电流方向为b→a;(2)a=gsinθ-;(3)Q==

【解析】

试题分析:(1)已知初始时刻的速度,可求电动势,再根据欧姆定律可求电流,由右手定则可判断出棒中的感应电流方向,进而得出电路中的电流方向来;(2)由于导体棒第一次回到初始位置时,速度的方向沿斜面向下,速度已知,感应电动势可求,电流可求,安培力也可求出来,且安培力的方向沿斜面向上,故棒受到的力有重力、安培力和支持力,求出它们在沿斜面方向上的分量,利用牛顿第二定律即可求出加速度的大小;(3)欲求电阻R上产生的焦耳热,我们可以通过求整个电路的焦耳热,再根据电阻的大小分配得出,而整个电路的焦耳热,则可由能量守恒定律得出来。

具体过程:

(1)棒产生的感应电动势E1=BLv0

通过R的电流大小I1=,电流方向为b→a。

(2)棒产生的感应电动势E2=BLv,

感应电流I2=

棒受到的安培力大小F=BIL=,方向沿斜面向上。

根据牛顿第二定律,有mgsinθ-F=ma,解得a=gsinθ-

(3)导体棒最终静止,有mgsinθ=kx,压缩量x=

设整个过程回路产生的焦耳热为Q0

根据能量守恒定律,有mv02+mgxsinθ=Ep+Q0,即Q0=mv02+-Ep

电阻R上产生的焦耳热Q==

考点:本题考查了感应电动势、安培力的计算,能量守恒定律等知识。

 

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

如图所示,固定的光滑斜面上,重力为G的物体在一水平推力F作用下处于静止状态.若斜面的倾角为θ,则(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,固定的光滑圆柱体半径R=
1π
(m),匀质柔软绳长度L=3m,质量m=0.9kg,搭放在圆柱体上,绳子右端A刚好与圆心O等高.(g=10m/s2
(1)若使绳子在如图位置静止,在A端施加的竖直向下的拉力F1多大?
(2)若给绳一个初速度v0=2m/s,同时给A端竖直向下的力F2,为保持A端在一段时间内竖直向下匀速运动,则力F2与时间t之间满足什么关系?
(3)若给绳一个初速度v0=2m/s,为使绳能够从圆柱体右侧滑落,在A端施加的竖直向下的拉力至少做多少功?

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,固定的光滑竖直杆上套着一个滑块,滑块用轻绳系着绕过光滑的定滑轮O;现以大小不变的拉力F拉绳,使滑块从A点起由静止开始上升,运动到C点时速度达最大.已知:滑块质量为m,滑轮O到竖直杆的距离为d,∠OAO=37°、∠OCO=53°;求:
(1)拉绳的拉力F;
(2)滑块运动的最大速度.

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,固定的光滑倾斜杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧上端相连,弹簧的下端固定在水平地面上的A 点,开始弹簧恰好处于原长h.现让圆环由静止沿杆滑下,滑到杆的底端(未触及地面)时速度恰好为零,已知当地的重力加速度大小为g.则在圆环下滑的整个过程中(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,固定的光滑圆弧轨道ACB的半径为0.8m,A点与圆心O在同一水平线上,圆弧轨道底端B点与圆心在同一竖直线上.C点离B点的竖直高度为0.2m.物块从轨道上的A点由静止释放,滑过B点后进入足够长的水平传送带,传送带由电动机驱动按图示方向运转,不计物块通过轨道与传送带交接处的动能损失,物块与传送带间的动摩擦因数为0.1,g取10m/s2.若物块从A点下滑到传送带上后,又恰能返回到C点,
(1)求传送带的速度.
(2)求物块在传送带上第一次往返所用的时间.

查看答案和解析>>

同步练习册答案