精英家教网 > 高中物理 > 题目详情
5.汽车质量m=2.0×103kg,行驶在平直公路上时所受阻力恒为车重的0.1倍,汽车发动机额定功率为80Kw.汽车从静止开始先匀加速启动,加速度a=1.0m/s2,达到额定功率后,汽车保持功率不变又加速行驶直到获得最大速度后才匀速行驶.若g取10m/s2,求:
(1)汽车匀加速启动阶段结束时的速度以及汽车的最大行驶速度;
(2)当速度为5m/s时,汽车牵引力的瞬时功率;
(3)当汽车的速度为32m/s时的加速度.

分析 首先要分析清楚汽车的运动过程:
第一阶段:匀加速运动阶段.
开始,汽车由静止做匀加速直线运动,这个过程中V增大,汽车功率P=FV也增大;
第二阶段:变加速运动阶段,加速度逐渐减小.
汽车输出功率达到其允许的最大值并保持不变时,其功率已不能维持汽车继续做匀加速直线运动了,此时汽车虽然做加速运动,但加速度逐渐减小,直到a=0.这个过程中P不变,F减小,V增大;
第三阶段:匀速直线运动阶段.
加速度等于0后,速度已达到最大值Vm,此时汽车做匀速直线运动,此时F=f,P=FV=fVm

解答 解:(1)汽车到达最大行驶速度时,牵引力和阻力相等,所以
${v_m}=\frac{p_额}{f}=\frac{{80×1{0^3}}}{{0.1×2.0×1{0^3}×10}}=40m/s$
设汽车匀加速启动阶段结束时的速度为v1
由牛顿第二定律得 F-f=ma,
可得 F=4×103N,
由p=Fv1,可得 ${v_1}=\frac{{80×{{10}^3}}}{{4×{{10}^3}}}=20m/s$,
(2)当速度为5m/s时,小于匀加速运动的最大的速度,此时处于匀加速阶段,
所以牵引力的瞬时功率为:p=Fv=4×103×5kw=20kW,
(3)当速度为32m/s时,大于匀加速运动的最大的速度,此时处于恒定功率启动阶段,设牵引力为F′,加速度为a′,
由 F′=$\frac{{P}_{额}}{v}$=$\frac{80×{10}^{3}}{32}$N=2.5×103N,
由 F′-f=ma′,
得a′=0.25m/s2
答:(1)汽车匀加速启动阶段结束时的速度是20m/s;汽车的最大行驶速度是40m/s;
(2)当速度为5m/s时,汽车牵引力的瞬时功率是20kW;
(3)当汽车的速度为32m/s时的加速度0.25m/s2

点评 高中物理中,分析受力和物理过程是非常重要的.最大功率要用第三阶段中的Pm=FV=fVm计算,而不能用第一阶段中的F与第三阶段中的Vm的乘积计算,两个F是不同的;Vm是最终速度,整个过程并不全是匀加速运动,不能用Vm=at来计算整个过程时间. 要注意某一时刻的物理量要对应起来.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

15.下列关于磁感应强度及磁场对通电导线、带电粒子作用的说法正确的是(  )
A.由$B=\frac{F}{IL}$可知,B与F成正比,与IL成反比
B.磁感应强度的方向与该处电流受力方向一致
C.一段通电直导线在磁场中某处不受磁场力作用,则该处磁感应强度为零
D.带电粒子在磁场中运动时,可能不受磁场力作用

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.图中A、B气缸的长度为L=30cm,横截面积为S=20cm2,C是可在气缸内无摩擦滑动的、体积不计的活塞,D为阀门.整个装置均由导热材料制成.起初阀门关闭,A内有压强pA=2.0×105 Pa的氮气,B内有压强pB=1.0×105 Pa的氧气.阀门打开后,活塞C向右移动,最后达到平衡.
①求活塞C移动的距离及平衡后B中气体的压强;
②活塞C移动过程中A中气体对外做功为25J,则A中气体是吸热还是放热?吸收或者放出的热量为多少?(假定氧气和氮气均为理想气体,连接气缸的管道体积可忽略)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.如图所示,半径为r、质量不计的圆盘盘面与地面相垂直,可绕圆心处垂直盘面的光滑水平固定轴O自由转动,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点$\frac{r}{2}$处固定一个质量也为m的小球B.放开圆盘让其由静止开始自由转动,问:
(1)A球由起始位置转到最低点的过程中,重力势能减少了多少?
(2)A球转到最低点时的线速度是多大?
(3)A球由起始位置转到最低点的过程中,圆盘对B球做了多少功?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图,竖直放置一半径为r的光滑圆轨道,b为轨道直径的两端,该直径与水平面平行.现有一质量为m的小球(大小忽略不计)在水平向右的a、恒力F作用下沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为Na和Nb,求
(1)水平向右的恒力F为多少?
(2)小球经过a点时动能为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图所示,水平面固定一个带有一段圆弧的轨道,圆弧对应圆心角为θ=53°.现有一质量为m1的滑块A以一定的初速度从光滑轨道的左侧滑上轨道,由P点进入圆轨道,再从Q点飞离圆轨道,滑块滑出轨道后恰好与右边水平桌面上的一静止物块B水平相碰,B的质量为m2,A、B碰后粘合在一起,然后滑行距离S停下,桌面与AB间的摩擦因数都是μ.已知m1=2m2,sin53°=0.8,cos53°=0.6,重力加速度为g.求滑块A在Q点时的速度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.下列说法正确的是(  )
A.电源的电动势在数值上等于电源在搬运单位电荷时非静电力所做的功
B.电阻率是反映材料导电性能的物理量,仅与材料种类有关,与温度、压力和磁场等外界因素无关
C.电流通过导体的热功率与电流大小成正比
D.电容是表征电容器容纳电荷本领的物理量.由C=$\frac{Q}{U}$可知电容的大小是由Q(带电量)或U(电压)决定的

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

8.下列关于牛顿的贡献表述正确有(  )
A.牛顿发现了万有引力定律
B.牛顿通过实验测出了万有引力常量
C.牛顿应用“理想斜面实验”推翻了“力是维持物体运动的原因”的观点
D.只有在国际单位制中,牛顿第二定律的表达式才是F=ma

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.图1为验证牛顿第二定律的实验装置示意图.图中打点计时器的电源为50Hz的交流电源,打点的时间间隔用△t表示.在小车质量未知的情况下,某同学设计了一种方法用来研究“在外力一定的条件下,物体的加速度与其质量间的关系”.

(1)完成下列实验步骤中的填空:
①平衡小车所受的阻力:小吊盘中不放物块,调整木板右端的高度,用手轻拨小车,直到打点计时器打出一系列均匀的点.
②按住小车,在小吊盘中放入适当质量的物块,在小车中放入砝码.
③打开打点计时器电源,释放小车,获得带有点迹的纸带,在纸带上标出小车中砝码的质量m.
④按住小车,改变小车中砝码的质量,重复步骤③.
⑤在每条纸带上清晰的部分,每5个间隔标注一个计数点.测量相邻计数点的间距s1,s2,….求出与不同m相对应的加速度a.
⑥以砝码的质量m为横坐标,$\frac{1}{a}$为纵坐标,在坐标纸上做出$\frac{1}{a}$--m关系图线.若加速度与小车和砝码的总质量成反比,则$\frac{1}{a}$与m处应成线性关系(填“线性”或“非线性”).
(2)完成下列填空:
(ⅰ)本实验中,为了保证在改变小车中砝码的质量时,小车所受的拉力近似不变,小吊盘和盘中物块的质量之和应满足的条件是远小于小车和小车中砝码的质量之和.

(ⅱ)设纸带上三个相邻计数点的间距为s1、s2、s3.a可用s1、s3和△t表示为a=$\frac{{{s}_{3}-s}_{1}}{5{0(△t)}^{2}}$.图2为用米尺测量某一纸带上的s1、s3的情况,由图可读出s1=24.2mm,s3=47.2mm.由此求得加速度的大小a=1.15m/s2
(ⅲ)图3为所得实验图线的示意图.设图中直线的斜率为k,在纵轴上的截距为b,若牛顿定律成立,则小车受到的拉力为$\frac{1}{k}$,小车的质量为$\frac{b}{k}$.

查看答案和解析>>

同步练习册答案