精英家教网 > 高中物理 > 题目详情
6.如图所示,在虚线MN上方有一水平向左的匀强电场,场强大小未知,在虚线MN下方有一水平向右的匀强电场,场强大小为E,O是虚线上的一点,一质量为m,带电量为-q的小球从O点开始以初速度v0向左上方运动,小球恰好能做直线运动,方向与水平方向的夹角为θ,当小球回到O点后进入MN下方的电场中运动,并能经过O点正下方的A点,求:
(1)小球做直线运动的过程中,电势能改变量的最大值;
(2)小球从O点出发运动到A点所用的时间;
(3)小球经过A点时速度的大小.

分析 (1)小球在上方的电场中恰好能做直线运动,则受到电场力和重力的合力必然与初速度相反,做匀减速直线运动,电场力做负功,当速度减为0时,电势能改变量最大;
(2)在上方电场中做匀减速运动,求出时间,再将在下方电场中的运动分解为水平方向的匀变速运动和竖直方向的匀加速运动,求解时间;
(3)求出在A点水平方向和竖直方向的分速度,再合成即可得到速度的大小.

解答 解:(1)在MN上方小球先做匀减速直线运动,电场力做负功,当速度减为0时,电势能改变量最大.受力如图,有:

qE1tanθ=mg       
F=$\frac{mg}{sinθ}$=ma
解得:E1=$\frac{mg}{qtanθ}$,a=$\frac{g}{sinθ}$
减速运动的位移:x=$\frac{{v}_{0}^{2}}{2a}=\frac{{v}_{0}^{2}sinθ}{2g}$                 
电场力做功:W=qE1xcos(π-θ)=-$\frac{1}{2}m{v}_{0}^{2}co{s}^{2}$θ
则电势能改变量的最大值为:$\frac{1}{2}m{v}_{0}^{2}co{s}^{2}$θ
(2)小球在上方的电场中运动过程:2v0=at1      
解得:t1=$\frac{2{v}_{0}sinθ}{g}$
再次回到O点时,v=v0      
从O点到A点过程,水平方向:qE=max,2v0cosθ=axt2     
解得:t2=$\frac{2m{v}_{0}cosθ}{qE}$
从O点出发运动到A点所用的时间:t=t1+t2=$\frac{2{v}_{0}sinθ}{g}+\frac{2m{v}_{0}cosθ}{qE}$
(3)到A点时:vx=v0cosθ,vy=v0sinθ+gt2         
vA=$\sqrt{{v}_{x}^{2}+{v}_{y}^{2}}$?
解得:vA=$\frac{{v}_{0}}{qE}$$\sqrt{{q}^{2}{E}^{2}+2mgqEsin2θ+4{m}^{2}{g}^{2}co{s}^{2}θ}$     
答:(1)电势能改变量的最大值为$\frac{1}{2}m{v}_{0}^{2}co{s}^{2}$θ;
(2)小球从O点出发运动到A点所用的时间为$\frac{2{v}_{0}sinθ}{g}+\frac{2m{v}_{0}cosθ}{qE}$;
(3)小球经过A点时速度的大小为$\frac{{v}_{0}}{qE}$$\sqrt{{q}^{2}{E}^{2}+2mgqEsin2θ+4{m}^{2}{g}^{2}co{s}^{2}θ}$.

点评 本题主要考查了带电粒子在复合场中的运动,关键是根据牛顿第二定律求解加速度,结合运动的合成与分解求解时间、速度.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

14.用两根绳子吊起一重物,使重物保持静止,若逐渐增大两绳之间的夹角,则两绳对重物拉力大小的变化情况和合力大小的变化情况分别是(  )
A.增大、增大B.增大、不变C.不变、不变D.不变、减小

查看答案和解析>>

科目:高中物理 来源: 题型:作图题

15.一个小球静止在墙角,试在图中作出小球的受力示意图.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

12.一物体以初速度做匀减速直线运动,3s末停止,则它在第1s内,第2s内,第3s内的位移之比为5:3:1,它在前1s内,前2s内,前3s内平均速度之比为5:4:3.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.如图甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压UMN=U0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.
(1)求带电粒子的比荷$\frac{q}{m}$;
(2)若M、N间加如图乙所示的交变电压,其周期T=$\frac{L}{{v}_{0}}$,从t=0开始,前$\frac{T}{3}$内UMN=2U,后$\frac{2T}{3}$内UMN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求U的值.
(3)若M、N间加如图乙所示的交变电压,其周期T=$\frac{L}{{v}_{0}}$,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求所有粒子在运动中偏离中轴线最小位移与最大位移比值的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

11.北京正负电子对撞机是国际上唯一高亮度对撞机,它主要由直线加速器、电子分离器、环形储存器和对撞测量区组成,图甲是对撞测量区的结构图,其简化原理如图乙所示:MN和PQ为足够长的水平边界,竖直边界EF将整个区域分成左右两部分,Ⅰ区域的磁场方向垂直纸面向外,磁感应强度大小为B,Ⅱ区域的磁场方向垂直纸面向里.调节磁感应强度的大小可以使正负电子经过两区域,在测量区内平行于EF方向上进行对撞.经加速后的电子以相同速率分别从注入口C和D同时入射,入射方向平行EF且垂直磁场.已知注入口C、D到EF的距离均为d,边界MN和PQ的间距为12($\sqrt{2}$-1)d,正、负电子的质量均为m,所带电荷量分别为+e和-e.

(1)试判断从注入口C、D入射的分别是哪一种电子;
(2)若将Ⅱ区域的磁感应强度大小调为B,正负电子以v=$\frac{(2-\sqrt{2})deB}{m}$的速率同时入射,则正负电子经过多长时间相撞?
(3)若正负电子仍以v=$\frac{(2-\sqrt{2})deB}{m}$的速率同时入射,欲确保正负电子不从边界MN或PQ射出,实现对撞,求Ⅱ区域磁感应强度B的最小值.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

18.磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示.导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求:
(1)如果导轨和金属框均很光滑,金属框对地是否运动?若不运动,请说明理由;如运动,原因是什么?运动性质如何?
(2)如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少?
(3)如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.如图所示,虚线MN左侧有一场强为E1=E的匀强电场,在两条平行的选项MN和PQ之间存在着宽为L、电场强度为E2=2E的匀强电场,在虚线PQ右侧相距为L处有一与电场E2平行的屏.现将一电子(电荷量为e,质量为m,不计重力)无初速度地放入电场E1 中的A点,A点到MN的距离为$\frac{L}{2}$,最后电子打在右侧的屏上,AO连线与屏垂直,垂足为O,求:
(1)电子从释放到打到屏上所用的时间t;
(2)电子刚射出电场E2时的速度方向与AO连线夹角θ的正切值tanθ;
(3)电子打到屏上的点P′(图中未标出)到点O的距离x.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

16.在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等,以下关于所用物理学研究方法的叙述正确的是(  )
A.根据速度定义式a=$\frac{△v}{△t}$,当△t极小时表示物体在时刻t的瞬时速度,该定义应用了极限思想方法
B.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法
C.在物理学的发展历程中,伽利略首先把实验和逻辑推理和谐地结合起来,从而有力地推进了人类科学发展
D.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法

查看答案和解析>>

同步练习册答案