精英家教网 > 高中物理 > 题目详情

如图所示,一轻质弹簧的一端固定于倾角为θ=30°的光滑斜面上端,另一端系质量m=0.5kg的小球,小球被一垂直于斜面的挡板挡住,此时弹簧恰好为自然长度.现使挡板以恒定加速度a=2m/s2沿斜面向下匀加速运动(斜面足够长),己知弹簧的劲度系数k=50N/m.重力加速度为g=10m/s2.求:
(1)小球开始运动时挡板对小球提供的弹力.
(2)小球从开始运动到与挡板分离时弹簧的伸长量.
(3)试问小球与挡板分离后能否回到出发点?请简述理由.

解:(1)设小球受挡板的作用力为F1,因为开始时弹簧对小球无作用力,
由 mgsinθ-F1=ma,
得 F1=1.5N
(2)因为分离时档板对小球的作用力为0,设此时小球受弹簧的拉力为F2
由mgsinθ-F2=ma,
得:F2=1.5N
由 F=kx
得x=3cm
(3)小球与档板分离后不能回到出发点
因为整个过程中挡板对小球的力沿斜面向上,小球位移沿斜面向下,所以挡板对小球做负功,小球和弹簧系统的机械能减少.
答:(1)小球开始运动时挡板对小球提供的弹力为1.5N.
(2)小球从开始运动到与挡板分离时弹簧的伸长量为3cm.
(3)小球与档板分离后不能回到出发点
因为整个过程中挡板对小球的力沿斜面向上,小球位移沿斜面向下,所以挡板对小球做负功,小球和弹簧系统的机械能减少.
分析:(1)小球与挡板分离前,两者加速度相同为a,根据牛顿第二定律就可求出小球刚开始运动时挡板对小球提供的弹力大小.
(2)小球与挡板分离时,挡板对球作用力为零,由牛顿第二定律可求出此时弹簧伸长的长度,就等于小球的位移.
(3)根据挡板的弹力做功正负,分析小球的机械能是否守恒,只有其机械能守恒才能回到出发点.
点评:本题要抓住临界状态,分析临界条件,即小球与挡板刚分离时,挡板对小球的作用力为零,这也是两物体刚分离时常用到的临界条件
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置.当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)轻放在弹簧a处,由静止释放后,球沿弹簧中轴线向下运动到最低点c处的过程中,下列说法正确的是(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,一轻质弹簧与质量为m的物体组成弹簧振子,物体在同一条竖直线上的A、B间做简谐运动,O为平衡位置,C为AO的中点,已知OC=h,振子的周期为T.某时刻物体恰好经过C点并向上运动,则从此时刻开始的半个周期时间内,下列判断正确的是(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,一轻质弹簧固定在水平地面上,O点为弹簧原长时上端的位置,一个质量为m的物体从O点正上方的A点由静止释放落到弹簧上,物体压缩弹簧到最低点B 后向上运动.则以下说法正确的是(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始下滑,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一端后从桌面边缘飞出.已知mA=m,mB=2m,mC=3m,求
精英家教网
(1)滑块A与滑块B碰撞结束瞬间的速度;
(2)被压缩弹簧的最大弹性势能;
(3)滑块C地点与桌面边缘的水平距离.

查看答案和解析>>

同步练习册答案