·ÖÎö £¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝËùÊܵĵ糡Á¦·½ÏòÈ·¶¨µç³¡Ç¿¶ÈµÄ·½Ïò£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³ö³¡Ç¿E£»
£¨2£©¸ù¾Ý¼¸ºÎ¹ØÏµÇó³öÁ£×ÓÔÚÔÈÇ¿´Å³¡${B}_{2}^{\;}$Öеİ뾶£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³ö${B}_{2}^{\;}$£¬ÓÉ${B}_{1}^{\;}$¡¢${B}_{2}^{\;}$µÄ¹ØÏµÇó³ö${B}_{1}^{\;}$£»
£¨3£©·Ö±ðÇó³öÁ£×ÓÀàÆ½Å×ʱ¼äºÍÔÚÔÈÇ¿´Å³¡${B}_{1}^{\;}$¡¢${B}_{2}^{\;}$ÖеÄÔÈËÙÔ²ÖÜÔ˶¯ËùÓÃʱ¼äÖ®ºÍ£¬¼´¿ÉÇó³ö´øµçÁ£×Ó´ÓPµãÔ˶¯µ½QµãµÄʱ¼ä£»
£¨4£©¸ù¾Ý¼¸ºÎ¹ØÏµÇó³öP¡¢QÁ½µã¼äµÄ¾àÀ룻
½â´ð
½â£º£¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¿ÉÖª´øµçÁ£×ÓÊܵ½µç³¡Á¦Æ½ÐÐxÖᣬ·½ÏòÑØxÖḺ·½Ïò£®ÓÉÓÚ´øµçÁ£×Ó´øÕýµç£¬ËùÒԵ糡ǿ¶È·½ÏòƽÐÐxÖá£¬ÑØxÖḺ·½Ïò
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵ㺴øµçÁ£×ӵļÓËÙ¶È$a=\frac{qE}{m}$
¸ù¾ÝÀàÆ½Å×Ô˶¯¹æÂɿɵãº
xÖá·½Ïò£º$x=\frac{1}{2}a{t}_{1}^{2}$£¬${v}_{x}^{\;}=a{t}_{1}^{\;}$
yÖá·½Ïò£º$y={v}_{0}^{\;}{t}_{1}^{\;}$
$tan45¡ã=\frac{{v}_{y}^{\;}}{{v}_{0}^{\;}}$
Óɼ¸ºÎ¹ØÏµ¿ÉµÃ£ºx+y=L
×ÛÉϽâµÃ£º$E=\frac{3m{v}_{0}^{2}}{2qL}$£¬${t}_{1}^{\;}=\frac{2L}{3{v}_{0}^{\;}}$£¬$y=\frac{2L}{3}$
£¨2£©´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄËÙ¶È$v=\sqrt{2}{v}_{0}^{\;}$
Á£×Ó¾¹ýOA±ßʱ£¬ËÙ¶È·½ÏòÊÇ´¹Ö±OA±ßµÄ£¬Ôٴξ¹ýxÖáµÄÕý°ëÖáÉϵÄQµãʱ£¬ËÙ¶ÈÒ²ÊÇÓëxÖá´¹Ö±£¬ËµÃ÷´øµçÁ£×Ó¾¹ýxÖḺ°ëÖáʱ£¬Ò²ÓëxÖá´¹Ö±£¬ËùÒÔ´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡${B}_{2}^{\;}$ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÔ²ÐľÍÊÇÔµãO£¬ËùÒÔÁ£×ÓÔÚÔÈÇ¿´Å³¡${B}_{2}^{\;}$ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶${r}_{2}^{\;}=\sqrt{2}y=\frac{2\sqrt{2}}{3}L$
Á£×Ó×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÂåÂ××ÈÁ¦Ìṩ
$qv{B}_{2}^{\;}=m\frac{{v}_{\;}^{2}}{{r}_{2}^{\;}}$£¬½âµÃ£º${B}_{2}^{\;}=\frac{mv}{q{r}_{2}^{\;}}=\frac{3m{v}_{0}^{\;}}{2qL}$£¬ËùÒÔ${B}_{1}^{\;}=\frac{4}{3}{B}_{2}^{\;}=\frac{2m{v}_{0}^{\;}}{qL}$
Á£×ÓÔÚÔÈÇ¿´Å³¡${B}_{2}^{\;}$ÖÐ×öÔ²ÖÜÔ˶¯µÄʱ¼ä${t}_{2}^{\;}=\frac{s}{v}=\frac{\frac{3}{4}¦Ð{r}_{2}^{\;}}{v}=\frac{¦ÐL}{2{v}_{0}^{\;}}$
£¨3£©Á£×ÓÔÚÔÈÇ¿´Å³¡${B}_{1}^{\;}$ÖÐ×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÂåÂ××ÈÁ¦Ìṩ
$qv{B}_{1}^{\;}=m\frac{{v}_{\;}^{2}}{{r}_{1}^{\;}}$£¬½âµÃ£º${r}_{1}^{\;}=\frac{mv}{q{B}_{1}^{\;}}=\frac{\sqrt{2}}{2}L$
Á£×ÓÔÚÔÈÇ¿´Å³¡${B}_{1}^{\;}$ÖÐ×öÔ²ÖÜÔ˶¯µÄʱ¼ä${t}_{3}^{\;}=\frac{s¡ä}{v}=\frac{¦Ð{r}_{1}^{\;}}{v}=\frac{¦ÐL}{2{v}_{0}^{\;}}$
ËùÒÔ´øµçÁ£×Ó´ÓPµãÔ˶¯µ½QµãµÄʱ¼ä$t={t}_{1}^{\;}+{t}_{2}^{\;}+{t}_{3}^{\;}=\frac{£¨2+3¦Ð£©L}{3{v}_{0}^{\;}}$
£¨4£©P¡¢QÁ½µã¼äµÄ¾àÀë$¡÷x=L+{r}_{2}^{\;}-2{r}_{1}^{\;}=\frac{3-\sqrt{2}}{3}L$
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈµÄ·½ÏòÑØxÖḺ·½Ïò£¬´óСΪ$\frac{3m{v}_{0}^{2}}{2qL}$
£¨2£©ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈB1µÄ´óС$\frac{2m{v}_{0}^{\;}}{2qL}$
£¨3£©´øµçÁ£×Ó´ÓPµãÔ˶¯µ½QµãµÄʱ¼ä$\frac{£¨2+3¦Ð£©L}{3{v}_{0}^{\;}}$
£¨4£©P¡¢QÁ½µã¼äµÄ¾àÀë$\frac{3-\sqrt{2}}{3}L$
µãÆÀ ¿¼²é´øµçÁ£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯ÓëÀàÆ½Å×Ô˶¯ÖУ¬ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÔ˶¯Ñ§¹«Ê½£¬²¢½áºÏ¼¸ºÎ¹ØÏµÀ´´¦ÀíÕâÁ½ÖÖÔ˶¯£¬Ç¿µ÷Ô˶¯µÄ·Ö½â£¬²¢Í»³ö׼ȷµÄÔ˶¯¹ì¼£Í¼£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | BÇòÊܵ½µÄºãÁ¦FСΪmAg+tan¦È | |
| B£® | Éþ¶ÔBÇòµÄÀÁ¦Îª$\frac{{m}_{B}g}{sin¦È}$ | |
| C£® | ¸Ë¶ÔA»·µÄµ¯Á¦Îª£¨mA+mB£©g | |
| D£® | A»·Óë¸ËµÄ¶¯Ä¦²ÁÒòÊýΪ$\frac{{m}_{B}}{{m}_{A}+{m}_{B}}$tan¦È |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | BµÆ¶Ï¿ª | B£® | AµÆ¶Ï¿ª | C£® | µçÔ´¶Ï¿ª | D£® | R¶Ï¿ª |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | B£® | ||||
| C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com