解:(1)若甲方运动员不刷冰,设冰壶石滑行最大距离为s
1,由动能定理得
∴s
1=29m
(2)设两冰壶石碰撞后,冰壶石C、D的速度分别是为v
1、v
2,考虑对方运动员刷冰,冰壶C不脱离营垒时,由动能定理得
解得:v
1=0.3m/s
两冰壶石相碰前,设冰壶石C的速度为v
1′
由动量守恒定律得
由能量守恒定律得
解得:v
2=1.5m/s
∴
m/s
(3)设甲方运动员在冰壶石碰撞前刷冰的最大距离为s
2由动能定理得
解得s
2≈28.3m
答:(1)若甲方运动员不刷冰,冰壶石C能滑行的最大距离是29m.
(2)为保证甲方在本局比赛中获胜,即冰壶石C不脱离营垒,冰壶石C碰撞前瞬间速度的大小是1.8m/s;
(3)为保证甲方在本局比赛中获胜,即冰壶石C不脱离营垒,甲方运动员在投掷线AB到营垒圆心之间刷冰的最大距离是28.3m.
分析:(1)若甲方运动员不刷冰,根据动能定理研究冰壶石C能滑行的最大距离.
(2)为保证甲方在本局比赛中获胜,考虑对方运动员刷冰,冰壶C不脱离营垒时,根据动能定理求得碰撞后冰壶C的速度.冰壶石C、D碰撞过程遵守动量守恒,结合题中能量关系,列式可求出冰壶石C碰撞前瞬间速度的大小;
(3)为保证甲方在本局比赛中获胜,冰壶石C不脱离营垒,速度必须达到(2)中碰撞前瞬间的速度,根据动能定理求解甲方运动员在投掷线AB到营垒圆心之间刷冰的最大距离.
点评:本题整合了动能定理、动量守恒定律、能量守恒定律等多个规律,只要细心,可以正确解答