精英家教网 > 高中物理 > 题目详情
14.场源电荷Q=+2×10-4C,检验电荷q=-2×10-5C,它们相距r=2m而静止,且都在真空中,如图所示.求:
(1)q受到电场力的大小及方向;
(2)q所在的B点的场强EB的大小及方向.

分析 (1)根据库仑定律求出q所受的电场力,由两个电荷电性关系,分析电场力方向.
(2)结合电场强度的定义式求出B点的场强,并确定场强的方向.

解答 解:(1)根据库仑定律得,q所受的电场力大小为 F=k$\frac{Qq}{{r}^{2}}$=9.0×109×$\frac{2×1{0}^{-4}×2×1{0}^{-5}}{{2}^{2}}$N=9N,方向由B→A.
(2)根据电场强度的定义式知,B点的场强大小 EB=$\frac{F}{q}$=$\frac{9}{2×1{0}^{-5}}$=4.5×105N/C.方向由A→B
答:
(1)q受的电场力9N,方向由B→A.
(2)q所在的B点的场强4.5×105N/C,方向由A→B.

点评 解决本题的关键掌握库仑定律和电场强度的定义式,知道场强的大小由电场本身性质决定,与放入电场中的检验电荷无关.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

4.如图所示,电感线圈L的自感系数足够大,其直流电阻忽略不计,LA、LB是两个相同的灯泡,且在下列实验中不会烧毁,电阻R2的阻值约等于R1的两倍,则(  )
A.闭合开关S时,LA、LB同时达到最亮,且LB更亮一些
B.闭合开关S时,LB立刻亮起来,LA缓慢变亮,且最后LA更亮一些
C.断开开关S时,LA慢慢熄灭,LB马上熄灭
D.断开开关S时,LA慢慢熄灭,LB闪亮后才慢慢熄灭

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

5.直流电动机是一种使用直流电流的动力装置,是根据通电线圈在磁场中受到安培力的原理制成的.如图1所所所示是一台最简单的直流电动机模型示意图,固定部分(定子)装了一对磁极,旋转部分(转子)装设圆柱形铁芯,将abcd矩形导线框固定在转子铁芯上,能与转子一起绕轴OO′转动.线框与铁芯是绝缘的,线框通过换向器与直流电源连接.定子与转子之间的空隙很小,可认为磁场沿径向分布,线框无论转到什么位置,它的平面都跟磁感线平行,如图2所示(侧面图).已知ab、cd杆的质量均为M、长度均为L,其它部分质量不计,线框总电阻为R.电源电动势为E,内阻不计.当闭合开关S,线框由静止开始在磁场中转动,线框所处位置的磁感应强度大小均为B.忽略一切阻力与摩擦. 

(1)求:闭合开关后,线框由静止开始到转动速度达到稳定的过程中,电动机产生的内能Q; 
(2)当电动机接上负载后,相当于线框受到恒定的阻力,阻力不同电动机的转动速度也不相同.求:ab、cd两根杆的转动速度v多大时,电动机的输出功率P最大,并求出最大功率Pm

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.关于物体速度与其受力的关系,下列说法正确的是(  )
A.速度变化越大,物体受力一定越大
B.速度变化越快,物体受力一定越大
C.物体受力不断减小,速度也不断减小
D.物体受力方向不变,速度方向也不变

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.某同学在做“研究平抛运动”的实验时,忘记记下斜槽末端位置,图中的A点为小球运动一段时间后的位置,他便以A点为坐标原点,建立了水平方向和竖直方向的坐标轴,得到如图所示的图象,根据图象可知小球做平抛运动的初速度为2.0m/s.抛出点运动到C点的运动时间0.3s.(取g=10m/s2).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.一战斗机飞行员驾驶飞机在万米高空的竖直平面内做匀速圆周运动,飞行速度为1080km/h,已知在最低点时飞钒的加速度为60m/s2(取g=10m/s2
(1)则飞机飞行的半径是多少;
(2)质量为70kg的飞行员在最低点时对座椅的压力;
(3)在最高点时飞机上脱落一个零件,求飞机飞行半圈时,零件的速度大小,不考虑零件受到的空气阻力(π2≈10)

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.在如图所示的电路中,理想变压器初级线圈加一个固定的交变电压,交流电表均可是为理想电表,原来开关S断开,那么下列情况中正确的是(  )
A.当R1的滑动端上移时,灯泡L变暗
B.当R1的滑动端上移时,电流表A1的示数变大
C.当R1的滑动端上移时,电压表V的示数变大
D.当闭合开关S时,电流表A1读数变大,A2读数变小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.LED发光二极管新技术已被广泛应用,如家用节能灯(LED灯)、LED投影仪、LED打印机、LED显示屏等.二极管是一种半导体元件,其特点是具有单向导电性,即电流从正极流入时电阻比较小,而从负极流入时电阻很大.

(1)某实验兴趣小组用多用电表粗测发光二极管正向电阻.他们先将多用电表的选择开关指向欧姆挡中“×10”挡位并正确进行调零,再将多用电表的黑(选填“红”或“黑”)表笔与待测二极管的“+”极相接,其表盘及指针所指位置如图甲所示,则此时发光二极管的电阻为120Ω.
(2)为了测定该发光二极管的伏安特性曲线,备用了如下一些仪器:
A.电压表:内阻约20kΩ;
B.电流表:内阻约200Ω
C.滑动变阻器(0~20Ω);
D.滑动变阻器(0~10kΩ);
E.开关及导线若干和够用的电源.
那么该实验中滑动变阻器应该选用C.
①请用这些仪器在图乙方框中画出实验原理图.
②某同学得出一些数据,如表所示,请在图丙坐标中画出其特性曲线.
U/A00.400.801.201.602.002.402.80
I/mA00.92.34.36.812.019.030.0
(3)若此发光二极管的最佳工作电流为10mA,现将此发光二极管与电动势为2.8V、内阻不计的电池组相连,则还需串联一个R=100Ω的电阻,才能使它工作时处于最佳伏态.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.图1为探究牛顿第二定律的实验装置示意图.图中打点计时器的电源为50Hz的交流电源,打点的时间间隔用△t表示.在小车质量未知的情况下,某同学设计了一种方法用来探究“在外力一定的条件下,物体的加速度与其质量间的关系”.

(1)完成下列实验步骤中的填空:
①平衡小车所受的阻力:小吊盘中不放物块,调整木板右端的高度,用手轻拨小车,直到打点计时器打出一系列等间距的点.
②按住小车,在小吊盘中放入适当质量的物块,在小车中放入砝码.
③打开打点计时器电源,释放小车,获得带有点列的纸带,在纸带上标出小车中砝码的质量m.
④按住小车,改变小车中砝码的质量,重复步骤③.
⑤在每条纸带上清晰的部分,每5个间隔标注一个计数点.测量相邻计数点的间距s1,s2,….求出与不同m相对应的加速度a.
⑥以砝码的质量m为横坐标,$\frac{1}{a}$为纵坐标,在坐标纸上作出$\frac{1}{a}$-m关系图线.若加速度与小车和砝码的总质量成反比,则$\frac{1}{a}$与m应成线性关系(填“线性”或“非线性”).
(2)完成下列填空:
①本实验中,为了保证在改变小车中砝码的质量时,小车所受的拉力近似不变,小吊盘和盘中物块的质量之和应满足的条件是远小于小车和砝码的总质量.
②设纸带上三个相邻计数点的间距为s1、s2和s3.a可用s1、s3和△t表示为a=$\frac{{s}_{3}-{s}_{1}}{2(5△t)^{2}}$.图2为用米尺测量某一纸带上的s1、s3的情况,由图可读出s1=24.2mm,s3=47.3mm,由此求得加速度的大小a=1.16m/s2
③图3为所得实验图线的示意图.设图中直线的斜率为k,在纵轴上的截距为b,若牛顿定律成立,则小车受到的拉力为$\frac{1}{k}$,小车的质量为$\frac{b}{k}$.

查看答案和解析>>

同步练习册答案